
GE
Intelligent Platforms

Programmable Control Products

C Programmer’s
Toolkit
for PACSystems*

User’s Manual, GFK-2259E

January 2012

 GFL-002

Warnings, Cautions, and Notes
as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages,
currents, temperatures, or other conditions that could cause personal injury exist in this
equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment,
a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note: Notes merely call attention to information that is especially significant to
understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts
have been made to be accurate, the information contained herein does not purport to cover all
details or variations in hardware or software, nor to provide for every possible contingency in
connection with installation, operation, or maintenance. Features may be described herein
which are not present in all hardware and software systems. GE Intelligent Platforms assumes
no obligation of notice to holders of this document with respect to changes subsequently made.

GE Intelligent Platforms makes no representation or warranty, expressed, implied, or statutory
with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or
usefulness of the information contained herein. No warranties of merchantability or fitness for
purpose shall apply.

* indicates a trademark of GE Intelligent Platforms, Inc. and/or its affiliates. All other
trademarks are the property of their respective owners.

©Copyright 2012 GE Intelligent Platforms, Inc.
All Rights Reserved

Contact Information

iii C Programmer’s Toolkit for PACSystems* User’s Manual–January 2012 GFK-2259E

If you purchased this product through an Authorized Channel Partner, please contact the seller

directly.

General Contact Information

Online technical support and

GlobalCare

http://support.ge-ip.com

Additional information http://www.ge-ip.com/

Solution Provider solutionprovider.ip@ge.com

Technical Support

If you have technical problems that cannot be resolved with the information in this manual, please

contact us by telephone or email, or on the web at http://support.ge-ip.com

Americas

Online Technical Support http://support.ge-ip.com

Phone 1-800-433-2682

International Americas Direct Dial 1-780-420-2010 (if toll free 800 option is unavailable)

Technical Support Email support.ip@ge.com

Customer Care Email customercare.ip@ge.com

Primary language of support English

Europe, the Middle East, and Africa

Online Technical Support http://support.ge-ip.com

Phone +800-1-433-2682

EMEA Direct Dial +352-26-722-780 (if toll free 800 option is unavailable or if

dialing from a mobile telephone)

Technical Support Email support.emea.ip@ge.com

Customer Care Email customercare.emea.ip@ge.com

Primary languages of support English, French, German, Italian, Czech, Spanish

Asia Pacific

Online Technical Support http://support.ge-ip.com

Phone +86-400-820-8208

+86-21-3217-4826 (India, Indonesia, and Pakistan)

Technical Support Email support.cn.ip@ge.com (China)

support.jp.ip@ge.com (Japan)

support.in.ip@ge.com (remaining Asia customers)

Customer Care Email customercare.apo.ip@ge.com

customercare.cn.ip@ge.com (China)

http://support.ge-ip.com/
http://www.ge-ip.com/
mailto:solutionprovider.ip@ge.com
http://support.ge-ip.com/
http://support.ge-ip.com/
mailto:support.ip@ge.com
mailto:customercare.ip@ge.com
http://support.ge-ip.com/
mailto:support.emea.ip@ge.com
mailto:customercare.emea.ip@ge.com
http://support.ge-ip.com/
mailto:support.cn.ip@ge.com
mailto:support.jp.ip@ge.com
mailto:support.in.ip@ge.com
mailto:customercare.apo.ip@ge.com
mailto:customercare.cn.ip@ge.com

Contents

GFK-2259E v

Introduction .. 1-1

Installation .. 2-1

System Requirements .. 2-1

Installing the C Toolkit for PACSystems ... 2-2

Running C Toolkit ... 2-3

C Toolkit File Structure ... 2-3

Uninstalling C Toolkit .. 2-4

Writing a C Application ... 3-1

Name Requirements ... 3-2

C Applications in the PACSystems Environment ... 3-3

PACSystems C Block Structure .. 3-13

PLC Reference Memory Access ... 3-18

Standard Library Routines .. 3-27

Application Considerations ... 3-123

Debugging and Testing C Applications .. 4-1

Testing C Applications in the PC Environment ... 4-1

Debugging C Applications in the PLC... 4-4

Conversion Notes and Series 90 Compatibility ... 5-1

Series 90 Compatibility Header Files (PLCC9070.h and PLCC9030.h) 5-1

Writing Directly to Discrete Memory ... 5-2

PLC Target Library Function Compatibility Issues ... 5-3

Compatibility Issues with Retentive Global Variables ... 5-4

“int” Type Issues ... 5-4

“enum” Type Issues .. 5-4

Non-Standard C Library Functions ... 5-5

Entry Point .. 5-5

C Standalone Programs ... 5-5

Use of Input Parameters as Pointers to Discrete Memory Tables 5-5

Installed Sample Blocks ... 6-1

SampleProj1 ... 6-1

SampleProj2 ... 6-2

Contents

vi C Programmer’s Toolkit for PACSystems* User’s Manual–January 2012 GFK-2259E

Target Library Functions ... A-1

Target Library Reference Memory Functions and Macros ... A-1

Target Library Fault Table Functions, Structures and Constants A-11

Target Library General Functions, Structures and Constants .. A-17

Target Library VME Functions, Structures and Constants ... A-27

Target Library Error Functions, Structures and Constants ... A-28

Target Library Utility Functions, Structures and Constants .. A-28

C Run-Time Library Functions .. B-1

Diagnostics ... C-1

GFK-2259E 1-1

Introduction

This manual contains essential information about the construction of C applications for

PACSystems control systems. It is written for the experienced programmer who is

familiar with both the C programming language and with the operation of PACSystems

control systems. For more information about PACSystems, refer to the list of

documents at the end of this chapter.

The PACSystems C Programmer’s Toolkit contains libraries, utilities, and

documentation required to create C applications for the PACSystems control system.

C blocks are constructed using the ANSI C programming language using text editing

and toolkit applications on a personal computer. The C blocks are incorporated into a

PACSystems application program through Proficy® Machine Edition programming

software. Using the programming software, C blocks can be called from ladder logic

or invoked by an I/O, module or timed interrupt. In the programming software, use the

Add C Block feature to insert C blocks.

The PACSystems CPU supports one type of C block, which has the capabilities of

both the Series 90-70-type C blocks and C function blocks. The PACSystems CPUs

and the PACSystems C Toolkit do not support Standalone C Programs, which is a

feature of the Series 90-70.

A PACSystems C block is, by default, limited to 256Kbytes in size, provided there is

sufficient PLC memory. Examples of calculations that might be performed in C blocks

include:

■ Ramp/soak profiling

■ Lead/lag calculation

■ Message generation

■ Input selection

■ Arithmetic operations

■ PID

■ Sorting, moving and copying data

Related Information

PACSystems CPU Reference Manual, GFK-2222

TCP/IP Ethernet Communications for PACSystems, GFK-2224

Station Manager for PACSystems, GFK-2225

Proficy* Machine Edition Logic Developer-PLC Getting Started, GFK-1918

1
Chapter

GFK-2259E 2-1

Installation

This chapter explains how to install the PACSystems C Toolkit software on your

personal computer.

This chapter provides the following information:

■ What you will need to use the C Toolkit software

■ Installing the C Toolkit for PACSystems

■ Running the C Toolkit

■ C Toolkit file structure

System Requirements
To use the C Toolkit, you will need the following:

■ PC: Pentium class processor, 166MHz or better

■ RAM: 128MB, minimum

■ Free Disk Space: 100MB, minimum

■ Operating System:

- Windows XP Professional (service pack 1 recommended) or Windows

2000 Professional (service pack 3 recommended)

Note: The C Programmer’s Toolkit for PACSystems has not been qualified for use

with the Windows Vista™ operating system.

2
Chapter

2-2 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

2

Installing the C Toolkit for PACSystems
This section describes how to install the C Toolkit software for PACSystems on your

computer and how to set up your computer to use the Toolkit.

Caution

Before installing the C Toolkit to the same directory as a
previous installation, you should first uninstall the previous
version. Failure to do so may cause the Toolkit to function
incorrectly.

To install the Toolkit:

1. Execute the setup.exe file..

2. Click the Next button. The next installation screen displays the default location

where the Toolkit will be installed: C:\GE Software\PACSystemsCToolkit.

You can change the install directory either by entering a directory path or by

browsing to the desired directory.

3. Click the Next button. The install program prompts you to create the installation

directory if necessary. The install program then asks if you want to proceed with

the installation in the designated directory.

4. To complete the installation, click the Start button. The install package installs the

software and user documentation components in the designated directory.

The installation program also installs an icon on your desktop.

When this operation is complete, the final installation screen is

presented. This screen provides the option for viewing the

readme.txt, which presents important start-up information.

5. Click Next.

6. To exit the installation program, click the Exit button. This launches the Toolkit,

which brings up a DOS box in the user project area. From the DOS box, you can

navigate to your project directories and compile C files. The initial screen will be

similar to the example shown below:

GFK-2259E Chapter 2 Installation 2-3

2

Running C Toolkit
To start the toolkit, double click the desktop icon (PACSystems(TM) C

Toolkit) or use the Start menu to execute the file ctkPACS.bat located at

the Toolkit's root directory.

In addition, you can also open an independent DOS window, navigate

to the directory containing the ctkPACS.bat file, run the ctkPACS.bat

file, navigate to your project and then compile the project.

Because the ctkPACS.bat file does not change the autoexec.bat file, the environment

variables are only valid for the life of the DOS window. This means that you can run

another version of the toolkit on the same machine without conflicts between the two

packages because the environment variables are local to each DOS window.

C Toolkit File Structure
The file structure of the installed C Toolkit is shown below.

2-4 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

2

Directories

Bin - contains the binary executable files used by C Toolkit.

Compilers - contains the tools to compile and link your C Block file(s).

Docs - contains local copies of user documentation in a standard format (html or pdf).

To navigate to the user documentation, double click the index.htm file located in the

root directory. The index.htm file provides links to the documentation on the Support

web site.

Projects - can be used to contain your C Block projects and in addition contains
sample C Block projects.

Targets - contains a target subdirectory and a debug subdirectory for each supported

target. The target subdirectories contain subdirectories for the C Run Time and Target

Library header files and compilation programs specifically needed for compiling C

Block files for that particular target. The debug subdirectories contain files needed to

compile and debug C Blocks on the PC using the Cygwin development environment.

The Targets directory also contains a CommonFiles subdirectory that contains files

common to more than one target.

Files:

ctkPACS.bat – opens a DOS box and sets up path and environment variables so that

C Blocks can be compiled from any location on your computer.

GNU.txt – lists the locations of files covered by the GNU General Public License.

index.htm – contains links to the user documentation.

license.txt - contains the license information for the C Toolkit.

readme.txt - indicates how to get to the readme file for a particular target.

readmePACRX.txt - contains start-up information for PACs targets.

readmePACRX3i.txt - contains start-up information for PAC RX3i targets.

readmePACRX7i.txt - contains start-up information for PAC RX7i targets.

uninstall.exe - removes the C Toolkit from your computer. Your project directories

are not removed during the uninstall process.

Uninstalling C Toolkit
To uninstall the C Toolkit, execute the Uninstal.exe file.

This deletes all files created by the C Toolkit install program. Any new files that you

have created in the directory structure will remain as user project files..

GFK-2259D 3-1

Writing a C Application

This chapter contains information needed to write C applications for the PACSystems

control system. It includes details on declaring parameters, accessing CPU reference

memory, and using standard library routines.

■ Name Requirements 3-2

■ C Applications in the PACSystems Environment 3-3

■ PACSystems C Block Structure 3-13

■ PLC Reference Memory Access 3-18

■ Standard Library Routines 3-27

■ Application Considerations 3-123

Note: For information on testing and debugging C applications, refer to chapter 4.

For information on compatibility with Series 90-70 and Series 90-30 C

applications and issues to be aware of when converting C applications from

90-70 or 90-30 to PACSystems, refer to chapter 5.

The C source code used to build C applications may be created using the text editor

of your choice, provided that the output from your editor is compatible with the GNU C

compiler. (Word processors are not recommended for editing C source code.) In

addition, your editor must properly handle both DOS- and UNIX-type line feeds (Note

that Notepad does not handle UNIX style line feeds and may not display some C

Toolkit files correctly).

It is also recommended that each C application be developed in its own subdirectory.

One approach would be to use the project subdirectory created when the C Toolkit

was installed. As each application is developed, a new subdirectory under the

\Projects\ subdirectory is created: for example,

Projects\Ramp

Projects\Limit

Projects\Press

,… etc.

3
Chapter

3-2 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Name Requirements

File Names

A C Block’s file name (for example, myCBlock.gefElf) before the *.gefElf extension

must conform to Machine Edition block naming conventions (a maximum of 31

characters long, first character must be a letter, no spaces). In addition, you should

not use the file name ―Rel‖. This name is reserved by the C Toolkit (see ―Compiling

User C Blocks Under an Older Toolkit Version‖ on page 3-9).

Reserved Names

To avoid C Toolkit and user naming conflicts, you should not use any of the following

types of names in your C Block application:

1. Names that begin with ―GEF_‖

2. Names that begin with a period ―.‖. For example ―.mydata‖

Failure to follow these rules could result in compilation or store errors and possibly

incorrect operation.

GFK-2259E Chapter 3 Writing a C Application 3-3

3

C Applications in the PACSystems Environment

Developing a C Block

For PACSystems, there is only one type of C Block and this block can be re-entrant if

re-entrant guidelines are followed. C Block source code is written using a text editor of

choice (with restrictions as outlined at the beginning of this chapter). In order to use

the Target Library functions and macros, you must use one of the following lines at

top of the C file:

#include <PACRXPlc.h> /*For C blocks that run on any PACSystems PLC*/

#include <PACRX7iPlc.h> /*For C blocks that use features only

available on an RX7i */

#include <PACRX3iPlc.h> /*For C blocks that use features only

available on an RX3i */

Note: In the 90-70 there are two types of C blocks (C BLK & C FBK). The C BLK

type cannot be re-entrant but can make use of the C Run-Time library. The C

FBK can be re-entrant but cannot use the C Run-Time library.

A list of the Target Library functions and macros are listed in Appendix A.

To use the C Run-Time Library functions, you must include one of more of the

following files as appropriate at the top of the C file:

#include <stdio.h> /* Input/Output */

#include <math.h> /* Math */

#include <stdlib.h> /* Math, Data Conversion, Search */

#include <string.h> /* String Manipulation, Internationalization */

#include <time.h> /* Time */

#include <ctype.h> /* Character Classification and Conversion */

A list of the C Run-Time library functions supported by the PACSystems is provided in

Appendix B.

The paths to these include files are set up when the C compiler runs, therefore the full

paths are not required in the ―include‖ file names. After including the appropriate

header files, you can write a C block, using library calls as needed to implement the

desired functionality. The C Block file or set of C Block files must have one and only

one function titled ―GefMain‖ to act as the entry point. A brief example is shown in

Figure 3-1.

3-4 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

/* myCFile.c */

#include <stdio.h>

#include <PACRXPlc.h>

T_INT32 status;

T_INT32 status2 = 1;

T_INT32 failCount = 0;

T_INT32 GefMain(T_INT16 *x1, T_INT16 *y1)

{

 if (*x1 != 0)

 {

 RW(10) = *x1; /*write x1 to %R10 as word */

 return GEF_EXECUTION_OK;

 }

 else

 {

 status = GEF_EXECUTION_ERROR;

 status2 = failCount;

 failCount++;

 return status;

 }

}

Figure 3-1. Example C Block Source File

The input parameters to the main block (x1 and y1) are derived from the input/output

parameters in the ladder program that calls the C Block. Input parameters are always

passed as pointers. An example is shown below:

Figure 3-2. Invoking a C block from Ladder Program

For this example, x1 points to the memory location of %R1 and y1 points to the

memory location of %R2. A return value of GEF_EXECUTION_OK enables power

flow output from the C Block while a return value of GEF_EXECUTION_ERROR

results in no power flow from the output of the C Block.

GFK-2259E Chapter 3 Writing a C Application 3-5

3

C Toolkit Variable Types

To maintain portability and reduce errors, it is recommended that you use the basic

types defined by the header file ctkGefTypes.h and the files it includes. This file is

located in the Toolkit subdirectory Targets\CommonFiles\IncCommon. This file

defines the recommended basic signed and unsigned types from 8 or 64 bit

quantities. These types are described below:

Table 3-1. Variable Types

C Toolkit
Variable Types

Description Corresponding
Programmer

Variable Type

Notes

T_BOOLEAN 8 bit type where 0 means FALSE
and non-zero means TRUE.
However TRUE typically is set to a
value of 0x01

BOOL In the programmer/PLC, this type
represents a single bit. Note: when
passing a Boolean parameter to a C
block, the memory address of the
PLC reference table memory must
be byte-aligned because the C Block
is passed a pointer to a Byte of
reference memory. The C user must
then mask off and test the least
significant bit to get the boolean
state.

T_BYTE 8 bit unsigned type. BYTE

T_WORD 16 bit unsigned type WORD

T_DWORD 32 bit unsigned type DWORD

T_INT8 8 bit signed type NA

T_INT16 16 bit signed type INT Caution: Using “int” in the C
source results in a 32 signed type
that does not properly match the
programmer’s “INT” type.

T_INT32 32 bit signed type DINT

T_UINT8 8 bit unsigned type BYTE

T_UINT16 16 bit unsigned type UINT

T_UINT32 32 bit unsigned type DWORD

T_UINT64 64 bit unsigned type NA

T_REAL32 32 bit floating point type REAL This is equivalent to ―float.‖

T_REAL64 64 bit floating point type LREAL This is equivalent to ―double.‖

Table 3-2. Standard Basic Types Commonly Used For C Block Applications

C Toolkit Variable
Types

Description Corresponding
Programmer Variable

Type

Notes

char 8 bit character NA Similar to a BYTE in programmer.

double 64 bit floating point LREAL

If you include the header file PLCC9070.h or PLCC9030.h, it equates Series 90 C

Toolkit basic types and the corresponding PACSystems C Toolkit basic types. This is

shown in the following table:

3-6 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Table 3-3. Relationship Between Series 90 and PACSystems Basic Types

90-30/90-70 Variable
type

Corresponding PACSystems C Toolkit Variable Type

byte T_BYTE

word T_WORD

dword T_DWORD

dint T_INT32

bflow T_BOOLEAN

Compiling

After developing a C Block as described in ―Developing a C Block‖ on page 3-3, the

C Block must be compiled to create a relocate-able object file that can be stored into

the PLC.

Compiling a Single C File

To compile the C Block:

1. Start the C Toolkit by double clicking on the PACSystems C Toolkit icon on your

desktop, double clicking on the ctkPACS.bat file through Windows explorer or

using the Start->Programs menu.

2. In the C Toolkit DOS box, navigate to the project directory containing the C block

file.

3. Type the appropriate compile command, followed by your file name.

■ To compile a C Block that can be run on any PACSystems RX PLC, use the

command: compileCPACRX <file name>.

■ To compile a C Block that uses functionality that is available only on an RX3i,

use the command: compileCPACRX3i <file name>.

■ To compile a C Block that uses functionality that is available only on an RX7i,

use the command: compileCPACRX7i <file name>.

For example, to run the RX7i compiler for a C file called ―myCFile,‖ type:

 compileCPACRX7i myCFile

If there are errors or warnings, they are noted on the screen. If the compile is

successful (no errors), an output file is produced with the same base name as the

input file and the extension ―.gefElf‖. The file is placed in a subdirectory under your

project directory called ―plc‖ so that it is clear which file is intended for downloading to

the PLC. For the ―myCFile‖ example, the following file is produced:

myCFile.gefElf

myCFile.gefElf contains the compiled relocate-able code that is used by the PLC to

load the C Block into user memory.

See section ―Restricting Compilation To a Specific Target‖ if you want your C Block to

always be compiled for a specific target.

GFK-2259E Chapter 3 Writing a C Application 3-7

3

Compiling Multiple C Files

If you want to have multiple C files compiled and linked together, you need to create a

file called ―sources‖ and include a line that specifies the files to compile. This line must

start with the word ―CFILENAMES=‖ (all capitals, no spaces) followed by the

filenames (there can be multiple spaces or tabs between ―CFILENAMES=‖ and the

first file and multiple spaces or tabs between each filename). An example of this line is

shown below:

CFILENAMES= myCFile1.c myCFile2.c myCFile3.c

If the list of files is long, a continuation symbol ―\‖ may be added to improve

readability in the file as shown below:

CFILENAMES= myCFile1.c myCFile2.c \

 myCFile3.c

The ―sources‖ file must be in the same project directory as the other C source files

when compiling.

■ To compile multiple C files into a C Block that can be run on any PACSystems RX

PLC, use the command: compileCPACRX.

■ To compile multiple C files into a C Block that uses functionality that is available

only on an RX3i, use the command: compileCPACRX3i.

■ To compile multiple C files into a C Block that uses functionality that is available

only on an RX7i, use the command: compileCPACRX7i .

For example, to compile multiple C files for a C Block that can be run on any

PACSystems RX PLC target, enter:

compileCPACRX

In this case, a file name is not given because the file name set comes from the

―sources‖ file. The name of the output file is the base name of the first file in the

sources file list plus the ―.gefElf ―extension. For the example given above, the output
file is: myCFile1.gefElf

Again, this file will be located in the subdirectory ―plc‖. When working with multiple

files, you will need to add the keyword extern to any function or global variable that is

referenced and declared in another file. For example if myCFile1 uses myFunction2

and myVar2 in myCFile2, myCFile1 must declare these ―extern‖ as shown below:

extern int myVar2;

extern void myFunction2(void);

3-8 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Specifying Compiler Options

You can specify the following compiler options by supplying keywords after the

filename for the single file case or setting flag1 and flag2 with one of the keywords in

the sources file when compiling multiple files:

1. Disable Stack Checking (Keyword = DisableStackCheck): this disables stack

checking on every user function call. This decreases C Block execution time but

eliminates a check to determine if a particular function call will overrun the user

program stack which could lead to data corruption and user program failure.

2. Enable ANSI compatibility (Keyword = EnableAnsi): this causes the compiler to

enforce ANSI standards such as the prevention of the use of the double slash for

comments.

An example of a single file compile using these keywords is shown below:

compileCPACRX myCFile DisableStackCheck EnableAnsi

An example of a multiple file compile using these keywords is shown below. In a file

with the name ―sources‖ include the following lines:

CFILENAMES= myCFile1.c myCFile2.c myCFile3.c

flag1 = DisableStackCheck

flag2 = EnableAnsi

To compile, type the following line in the DOS box in the same directory as the

―sources‖ file:

CompileCPACRX

You can also link pre-compiled object files by using the following line in the ―sources‖

file:

OFILENAMES=myCFile4.plcO

Multiple object files can be linked by placing space (spaces or TABS) between file

names. In addition, the file names can be on separate lines if the continuation slash is

added at the end of the line as shown below:

OFILENAMES=myCFile4.plcO myCFile5.plcO \

 MyCFile6.plcO

The following lines show an example of a ―sources‖ file that compiles multiple C

source files, multiple object files and sets compile flags:

CFILENAMES= myCFile1.c myCFile2.c myCFile3.c

OFILENAMES=myCFile4.plcO myCFile5.plcO

flag1 = DisableStackCheck

flag2 = EnableAnsi

PLC object files can be created by using the flag ―DisableGefLibLink‖. To create

myCFile4.plcO in the current directory, type the following line:

compileCPACRX myCFile4 DisableGefLibLink

GFK-2259E Chapter 3 Writing a C Application 3-9

3

Compiling User C Blocks Under an Older Toolkit Version

If you are developing C blocks for a PLC with an older firmware version, the C Toolkit

allows the code to be compiled under the limitations of an older C Toolkit version. You

can specify the Toolkit release on the command line (as the last two parameters) at

the time the C block is compiled. If a version is not specified, the C code will be

compiled with the most recent version (newest feature set). For example:

Normal command:

compileCPACRX myCFile OR compileCPACRX (assumes a ―sources‖ file)

Release-specifying command example:

compileCPACRX myFile Rel 1_0 OR compileCPACRX Rel 1_0 (assumes a

―sources‖ file)

In this example, the release specified in the second command is 1.0. Release

numbers should be preceded by the keyword ―Rel‖ so that the compile batch file

knows that ―compileCPACRX Rel 1_0‖ is meant to compile the C code specified in a

sources file within the constraints of release 1.0 of the C Toolkit. (The name of the file

containing the user’s C code, if specified on the command line, cannot be ―Rel.‖)

As of Release 5.00, the following revisions can be specified on the command line after
the keyword "Rel":

1_0

1_5

2_0

2_5

3_5

5_0

Associating a Compiled C Block with the Application Program

After the program is compiled, you must associate the *.gefElf file with a C Block in

your PLC program using the programmer. The C Block must have the same number

of parameters as the GefMain function’s input parameter signature as illustrated in

Figure 3-1. However, there is not a check to determine if the signatures match. In

cases where the signatures do not match, the C Block may not behave correctly.

Adding Blocks through the Machine Edition Programmer

Before importing the block into Machine Edition, the C application source file must be

compiled and linked to create the relocate-able version of the C application (*.gefElf).

Once the relocate-able version of a C application source file is created, the file needs

to be added to a target within your CME project as follows:

1. In the Project tab, expand the Logic node.

2. Right click the Program Block node under the Logic node.

3. Select Add C Block. This brings up a file navigation dialog box.

4. Navigate to the *.gefElf file and click the Open button to add the C Block to the

folder.

3-10 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Specifying Parameters

To specify the parameters for a C Block with one or more input/output parameters,

click on the C Block. In the properties page for the C Block, click the Parameters item

and then click on the button provided. This opens the Parameters dialog box

containing two tabs, one for inputs and one for outputs. For each input/output,

provide:

■ Name

■ Type (BOOL, BYTE, DINT, DWORD, INT, LREAL, REAL, UINT, WORD) (See

section ―C Toolkit Variable Types‖ for information on how to map

programmer/PLC types to C Toolkit types)

■ Length

Note: All parameters must be declared, even if some of them are NULL. (A NULL

parameter may be used when converting a 90-70 C Block to PACSystems.)

To declare the parameter in Machine Edition, the parameter must have both a

type and a length. If the type is specified as NONE, with no length, Machine

Edition does not generate the parameter.

GFK-2259E Chapter 3 Writing a C Application 3-11

3

Scheduling C Blocks

To schedule a C Block as a timed, I/O, or module Interrupt, click on the C Block. In the

Properties page for the C Block, click the Scheduling item and then click on the button

provided. This opens the Scheduling dialog box that allows you to select:

■ Type: Timed, I/O, or Module Interrupt

■ Trigger: I/O address for I/O or Module Interrupt

■ Time Base: 0.001s, 0.01s, 0.1s, or 1s base for timed interrupts

■ Interval: the number of time base units between timed interrupts

■ Delay: initial delay before the timer starts for timed interrupts

Please note that only C blocks with no Input and Output parameters may be

scheduled.

Using a C Block in an LD or FBD Program

To use a C Block in the ladder or

function block diagram program, place a

Call instruction in the desired location.

Select the C block desired. If the block

has parameters, provide reference

memory locations for each input and

output parameter.

To use a C block in an ST program, see

page 3-12.

3-12 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Using a C Block in an ST Program

You can call a C block from an ST program by using a Block Call statement. A block

call to a parameterized C block can use either the informal or formal convention.

Call to an unparameterized C block:

My_C_Block;

Call to a parameterized block using the informal convention:

My_C_Block(my_Input1, my_Input2, my_Output2, my_Output1);

Call to a parameterized block using the formal convention (parameters can be in

any order):

My_C_Block(Out1 => my_Output1, In1 := my_Input1, In2 := my_Input2,

Out2 => my_Output2);

GFK-2259E Chapter 3 Writing a C Application 3-13

3

PACSystems C Block Structure
A C block can be invoked in one of five ways:

1. As a sub-block of the main block.

2. As a sub-block of an LD, ST, or FBD block.

3. As a sub-block of an LD, ST, or FBD block with parameters (parameterized

block).

4. As an I/O, timed, or module interrupt block.

5. As a sub-block of an interrupt block.

Blocks invoked as a sub-block of main, or as a sub-block of an interrupt block may

have up to sixty three input and sixty-four output parameters. The input parameters do

not have to be paired with output parameters as required in the Series 90-70. Blocks

invoked as an I/O, timed, or module interrupt cannot have parameters. Shown below

are two ladder logic rungs containing a C block with zero parameters and a C Block

with three input and three output parameters.

Figure 3-3. Ladder Logic Calls to C Blocks

Note: The Enable output (ENO) is present regardless of whether the block has

parameters and is set based on the function return result (either

GEF_EXECUTION_OK or GEF_EXECUTION_ERROR). Each block is written

as a separate application that is linked and located during the program store

process.

3-14 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Appropriate definitions of GEF_EXECUTION_OK or GEF_EXECUTION_ERROR are

given in the ctk.h file, which is included by the header file PACRXPlc.h. The ctk.h file

is located in the subdirectory PACSystems

CToolkit\Targets\CommonFiles\IncCommon. The gefElf file produced by the build

process of a block must be added to the program folder via CME using the Add C

Block command.

The main function in each block must always be called GefMain. Any legal C

declaration and code may be used in a C block. The file PACRxPlc.h, installed as part

of the C Toolkit, should be included in the block source file(s). PACRxPlc.h contains

or includes other files that contain declarations, definitions, and macros used in writing

blocks.

The following example shows the basic components of a block with no parameters:

#include PACRXPLC.h /*PACSystems RX interface file*/

int GefMain ()

{

 /*value of function block ENO output determined by return value */

 return GEF_EXECUTION_OK;

}

Variable Declarations

Global and static variables may be used in a C block. The space allocated for them is

taken from the 256K byte default space allowed for each block. Local, or automatic,

variables are allocated on the stack. PACSystems guarantees that a minimum of 5120

bytes is available on the stack before calling a C block. If this amount of space is not

available before calling the block, a diagnostic application fault will be logged in the

fault table.

Stack Overflow Checking

Stack overflow checking is enabled by default.

If C block stack checking is enabled when the block is built and the CPU detects that

there is not enough space available on the stack when calling a user function within a

block, an application fault will be logged in the controller fault table and the block will

be exited at the point where the potential stack overflow is detected. The block ENO

output will be turned off. To resolve the problem, you will need to evaluate if there is a

problem in your application, such as a recursion (a block calling itself) or increase the

stack size. Stack size can be increased in 8K byte increments on the _MAIN Block

properties page in the programmer.

If C block stack checking is enabled when the block is built and the CPU detects the

stack has already overflowed when calling a user function within a C block, a fatal

application fault will be logged in the controller fault table and the PLC will be placed

in Stop Faulted mode. In some cases, such as when a function allocates a large

amount of local or automatic variables in the stack, and the stack depth is near the

bottom of the stack, a page fault may occur and the CPU will be placed in CPU halted

mode.

GFK-2259E Chapter 3 Writing a C Application 3-15

3

If stack checking is disabled via the block build process and the application exceeds

the allocated stack space, a page fault may occur or the CPU may receive invalid

data.

The order of the parameter declarations must match the CALL instruction parameter

order, with the input parameters followed by the output parameters. The declaration

code shown below could be used for a block that has two input and two output

parameters.

Figure 3-4. Matching Parameters Between Call and C Block

int GefMain (X1, X2, Y1, Y2)

/*X1 - pointer to a single 16 bit integer */

T_INT16 *X1;

/*X2 - pointer to a 256 element array of integers */

T_INT16 X2[256];

/*Y1 - pointer to a structure containing a 16 bit integer */

/* and a floating point variable */

struct

{

T_INT16 a;

T_REAL32 b;

} *Y1;

/*Y2 - pointer to an unsigned 16 bit integer */

T_WORD *Y2;

/* Body of GefMain function starts here */

3-16 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

It is not required that all of the CALL instruction parameters be used. If a CALL

instruction parameter is not used, a NULL pointer is passed as that parameter’s value.

The parameter must still be declared for the C Block in the programmer, so that

subsequent parameters are lined up correctly with their pointers. In the following

example, a NULL pointer is passed in for the second and third input parameters.

Figure 3-5. Reserving Space for Unused Parameters to a C Block

int GefMain(x1, x2, x3, y1, y2, y3)

 T_INT16 *x1;

 T_INT16 *x2; /* placeholder for unused parameter, value is null

*/

 T_INT16 *x3; /* placeholder for unused parameter, value is null

*/

 T_INT16 *y1;

 T_INT16 *y2;

 T_INT16 *y3;

{

 *y1 = *x1; /* Copy value at x1 to y1 */

 *y2 = *x1 * 2; /* copy twice the value at x1 to y2 */

 *y3 = *x1 * 3; /* Copy three times the value at x1 to y3 */

 return(GEF_EXECUTION_OK)

}

GFK-2259E Chapter 3 Writing a C Application 3-17

3

Parameter Pointer Validation

The ladder logic program provides pointers to the variables that are passed into the

block’s GefMain () function. Since it is not required to provide variables for all

input/output parameters, you should check to make sure a pointer is not NULL before

using it in your application. An example of this NULL pointer checking is shown below:

int GefMain (T_INT16 *x1, T_INT16 *x2, T_INT16 *x3, T_INT16 *y2,

T_INT16 *y3)

{

 /* Ensure that required parameters were provided by caller */

 if

((x1==NULL)||(x2==NULL)||(x3==NULL)||(y1==NULL)||(y2==NULL)||(y3==NULL

))

 return(GEF_EXECUTION_ERROR);

 /* Required parameters are present. */

 *y1 = *x1; /* Copy value at x1 to y1 */

 *y2 = *x1 * 2; /* copy twice the value at x1 to y2 */

 *y3 = *x1 * 3; /* Copy three times the value at x1 to y3 */

 return(GEF_EXECUTION_OK)

}

3-18 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLC Reference Memory Access

PACSystems reference address and diagnostic memory may be read and written

directly via macros defined in ctkRefMem.h, which is included with PACRx. Most of

these macros consist of a string of capitalized letters for non-discrete memory and

Title Case for discrete memory, which indicate the PACSystems reference type (and

in some cases, the type of operation to be performed) followed by the reference offset

in parentheses. In general, PLC reference memories may be accessed via these

macros as bits, bytes (8 bit values), words (16 bit values), double words (32 bit

values), single precision floating point numbers (32 bits), or double precision floating

point numbers (64 bits).

Caution

Use extreme caution with the following discrete macros. These
macros directly access discrete memory without taking into
account corresponding override and transition memory.

%Ib (x) %Iw (x) %Ii (x) %Id (x)

%Qb (x) %Qw (x) %Qi (x) %Qd (x)

%Mb (x) %Mw (x) %Mi (x) %Md (x)

%Tb (x) %Tw (x) %Ti (x) %Td (x)

%Gb (x) %Gw (x) %Gi (x) %Gd (x)

%Sb (x) %Sw (x) %Si (x) %Sd (x)

%SAb (x) %SAw (x) %SAi (x) %SAd (x)

%SBb (x) %SBw (x) %SBi (x) %SBd (x)

%SCb (x) %SCw (x) %SCi (x) %SCd (x)

Note: This behavior is different from the Series 90-70 and Series 90-30 C feature.

Potential consequences:

 Inputs, outputs or internal discrete memory (for example %M) that are overridden

(forced) to a particular state can change to the opposite of the overridden state if a

write operation is performed using these macros.

 Transitions on discrete memory will not be detected, potentially affecting transition

sensitive logic.

Alternatives:

 Use the following functions to write to discrete memory: WritePLCByte,

WritePLCWord, WritePLCINT, WritePLCDint, PLMemCopy, SetBit, ClearBit,

WritePLCDouble.

GFK-2259E Chapter 3 Writing a C Application 3-19

3

The complete set of reference type designators are as follows:

Reference
Type

Description

%I Discrete input references (use only for reading reference memory)

%Q Discrete output references (use only for reading reference memory)

%M Discrete internal references (use only for reading reference memory)

%T Discrete temporary references (use only for reading reference memory)

%G Discrete global data references (use only for reading reference memory)

%S Discrete system references (use only for reading reference memory)

%SA Discrete maskable fault references

%SB Discrete non-maskable fault references

%SC Discrete fault summary references

%AI Analog input registers

%AQ Analog output registers

%R System register references

%W Bulk memory references

%P Program registers (use to store program data from main)

%L Local registers (use to store program data unique to a block)

How to Format a PLC Reference Access Macro

The table shown below gives the modifiers used with the PLC reference macros

(listed in Appendix A). The format for usage of these macros is as follows:

The letter of reference type, followed by one of the modifiers

followed by a parenthetical number for the address you wish to

access; e.g.,

RI(1)=3; This assigns the integer value 3 to %R00001

RW(2)=0x55AA; This assigns the word value 55AAh to %R00002

The data type modifiers are as follows:

Modifier Description

B Unsigned byte reference (8 bits, 0 -> 255)

W Word reference (16 bits, 0 -> 65535)

I Integer reference (signed 16 bits, -32768 -> 32767)

D Double precision integer reference (signed 32 bits, -2147483648 ->
2147483647)

F Floating point reference (32 bit IEEE floating point format)

Dbl Double precision floating point reference (64 bit IEEE floating point format)

Certain combinations of reference type designators and data type modifiers are not

supported. Those combinations that are supported have macros defined in the

ctkRefMem.h file. Refer to Appendix A for the complete set of macros provided.

Macros that permit access to reference memories as bits are slightly different from

macros that access the same reference memories as bytes, words, double words,

and/or floating point numbers. Bit access macros, byte access macros, word/integer

access macros, word-memories-as-bytes access macros, and double word/floating

point access macros are described on the following pages of this chapter.

3-20 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Bit Macros

There are three bit macros defined for each reference memory type:

Macro Description

 BIT_TST_X Tests the specified bit

 BIT_SET_X Sets the specified bit

 BIT_CLR_X Clears the specified bit

References in a C application to %I would use BIT_TST_I(), BIT_CLR_I(), or

BIT_SET_I(). The macro name indicates that %I reference memory is to be

operated on and the operation is tested (TST), cleared (CLR), or set (SET). The value

contained in parentheses is the reference number of the item to be tested, cleared, or

set (for example, 120 for %I120). The bit set and bit clear macros are separate C

application source statements.

Note: The bit test macros return a boolean value contained in a byte. The accessed

bit is right justified (least significant bit) in the byte, that is, each of the bit test

macros will evaluate to 0 if the bit is OFF or 1 if the bit is ON.

The C application shown below will set %Q137, %M29, and %T99 if %I120 is ON and

will clear %Q137, %M29, and %T99 if %I120 is OFF:

Example:

#include “PACRXPlc.h”

int GeFMain() {

 if (BIT_TST_I(120)) {

 BIT_SET_Q(137);

 BIT_SET_M(29);

 BIT_SET_T(99);

 } else {

 BIT_CLR_Q(137);

 BIT_CLR_M(29);

 BIT_CLR_T(99);

 }

 return(GEF_EXECUTION_OK);

}

The bit macros for accessing word-oriented PLC memories (%R, %W, %P, %L, %AI,

and %AQ) as bits are similar to the above description except that these macros

require one additional parameter, namely, the position within the word of the bit being

accessed. The three forms of bit macros for accessing word-oriented PLC memory

are BIT_SET_, BIT_CLR_, and BIT_TST_ (to specify the type of operation) followed

by R, W, P, L, AI, or AQ (to specify the PLC reference memory to be used). There are

two required parameters to these macros:

1. The word in the reference memory to access (1 to highest reference available in

the specified PLC memory).

2. The bit in the selected word to use (bit numbers 1 to 16, with bit 1 being the least

significant or rightmost bit).

GFK-2259E Chapter 3 Writing a C Application 3-21

3

To illustrate the bit macros for word-oriented memory, consider the following section

of a C application:

if (BIT_TST_R(135, 6))

 BIT_SET_P(13, 4);

else

 BIT_CLR_AI(2,1);

This portion of a C application checks the sixth bit in %R135. If the bit is on (1), then

the fourth bit in %P13 is to be set ON (1); otherwise, the first bit in %AI2 is to be set

OFF (0).

Note: The ―BIT_‖ macros used to access bits in word-oriented memories use a 1 to

16 bit numbering scheme, with bit 1 being the least significant bit and bit 16

being the most significant bit.

Byte Macros

Macros are provided to read the PLC bit memories as bytes. These macros are Ib(x),

Qb(x), Mb(x), Tb(x), Gb(x), Sb(x), SAb(x), SBb(x), and SCb(x).

Caution

Use extreme caution with the following discrete macros. These
macros should not be used to write directly to discrete memory
because they do not take into account corresponding override
and transition memory. For details, refer to “PLC Reference
Memory Access” on page 3-18.

The parameter x in each of these macros should be replaced with the reference

address of a bit which is contained in the byte; for example, if the byte containing

%M123 is needed, use Mb(123). The byte access macros should only be used on the

right-hand side of a C statement (read operation only).

The example that follows sets the variable MyVar equal to the byte starting at %Q65

and ending at %Q72.

Example:

#include “PACRxPlc.h”

int GeFMain() {

 T_BYTE MyVar;

 MyVar = Qb(72);

 return(GEF_EXECUTION_OK);

}

Accessing bytes from word-oriented memories (%R, %W, %P, %L, %AQ, and %AI)

requires an additional parameter to indicate which byte is to be read or written. The
symbols HIBYTE and LOBYTE are defined in PACRxPLC.h for this purpose. For

3-22 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

example, your C application requires that the low byte of %R5 be read into a C

application local variable and then copied into the high byte of %R17:

Example:

#include “PACRxPLC.h”

int GefMain() {

 T_BYTE abytvar;

 abytvar = RB(5,LOBYTE); /* read low byte of %R5 */

 RB(17,HIBYTE) = abytvar; /* write high byte of %R17 */

 return(GEF_EXECUTION_OK);

}

Integer/Word Macros

All PLC reference memories may be accessed as 16-bit 2’s complement integers

(T_INT16) or as 16-bit unsigned integers (T_WORD). As an example, a C application

needs to read %R123 as an unsigned 16-bit integer and write %P13 as a 2’s

complement 16-bit integer and store the values in separate local C source variables:

Example:

 #include “PACRxPLC.h ”

int GefMain () {

 T_WORD word_val;

 T_INT16 int_val = -133;

 word_val = RW(123);/* read %R123 as a word */

 PI(13) = int_val; /* copy 2‟s complement integer to %P00013 */

 .

 return(GEF_EXECUTION_OK);

}

GFK-2259E Chapter 3 Writing a C Application 3-23

3

Double Word/Floating Point Macros

All PLC reference memories may be accessed as 32-bit signed integers (T_INT32),

but only the word-oriented memories (%R, %W, %P, %L, %AQ, and %AI) may be

accessed as 32-bit floating point numbers (T_REAL32). As an example, a C

application needs to read %R77 as a 32 bit integer and write a single precision

floating point value to %P6.

Example:

#include “PACRXPlc.h”

GefMain() {

 T_INT32 T_INT32_val;

 T_REAL32 fp_val = 15.56;

 INT21_val = RD(77); /* read %R77 as a 32 bit integer */

 PF(6) = fp_val; /* write %P6 as single precision floating

 point */

 .

 return(GEF_EXECUTION_OK);

}

Double Precision Floating Point Macros

Word-oriented PLC reference memories (%AI, %AQ, %L, %P, %R, %W) may be

accessed as 64-bit floating point values (T_REAL64). As an example, a C application

needs to read the LREAL variable in %R101 and write that value to the LREAL

variable at %W50.

Example:

#include “PACRXPlc.h”

GefMain() {

 T_REAL64 lreal_value;

 lreal_value = RDbl(101);

 WDbl(50) = lreal_value;

}

3-24 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Reference Memory Size Macros

Macros are defined in ctkRefMem.h for determining the size of each memory type.

These macros are in the form X_SIZE, where X is the memory type letter I, Q, M, T,

G, S, R, W, AI, AQ, P, or L. Each of these size macros returns an unsigned integer

value equal to the highest reference available in the specified reference memory. If

the last available reference in the %I table is %I32768, when a C application uses the

I_SIZE macro, the value 32768 will be returned.

Caution

The reference memory size macros should be used to determine
the size of the memory types written within a C application.
Reads and writes outside of the configured range can result in
incorrect data or PLC CPU failure. A safer alternative is to use
read/write PLC functions that perform address boundary
checking. These functions are: WritePlcByte, WritePlcWord,
WritePlcInt, WritePlcDint, PlcMemCopy, SetBit, ClearBit,
ReadPlcByte, ReadPlcWord, ReadPlcInt, ReadPlcDint.

For example, a C application is created that takes an index as a single input

parameter into the register table. The application is designed to index into the register

table using the input parameter and copy the located value to the single output

location (MOVE from source array registers [input parameter] to output parameter).

This C application is to be designed so that it may be run on any PACSystems CPU,

regardless of differing register memory table sizes:

Example:

#include “PACRxPlc.h”

int GefMain(T_WORD *X1, T_INT16 *Y1) {

 if ((X1 != NULL)&& (Y1 != NULL)) {

 if (*X1 > R_SIZE) {

 /* Index into registers is too large! */

 return(ERROR);

 } else {

 /* Index into registers and copy value to output

 parameter*/

 *Y1 = RI(*X1);

 }

 return(GEF_EXECUTION_OK);

 }

 else return (GEF_EXECUTION_ERROR);

}

GFK-2259E Chapter 3 Writing a C Application 3-25

3

Transition, Alarm, and Fault Macros

Transition, alarm, and fault bits associated with reference memory can also be
referenced. In addition, the special system %S contacts FST_SCN, LST_SCN, T_10MS,

T_100MS, T_SEC, T_MIN, ALW_ON, ALW_OFF, SY_FULL, and IO_FULL are supported for

C blocks.

The FST_EXE macro is supported. This is high (1) the first time a block is executed. C

Blocks and Parameterized Blocks inherit FST_EXE from the calling block. Interrupt

blocks (C, LD, FBD or ST) inherit FST_EXE from the _MAIN block.

The following macros are available for a PACSystems folder:

Transition and Alarm Macros

Macros for accessing the %I, %Q, %M, %T, %G, %S, and %SA - %SC transition
bits

Note: A transition bit is set high (1) if consecutive writes to a reference bit results in

the bit transitioning form a 0 to 1 or 1 to 0. The bit is cleared (0) if consecutive

writes to a reference bit result in the bit staying at the same state (0 to 0, 1 to

1, for example).

BIT_TST_I_TRANS(x)

BIT_TST_Q_TRANS(x)

BIT_TST_M_TRANS(x)

BIT_TST_T_TRANS(x)

BIT_TST_G_TRANS(x)

BIT_TST_S_TRANS(x)

BIT_TST_SA_TRANS(x)

BIT_TST_SB_TRANS(x)

BIT_TST_SC_TRANS(x)

Macros for accessing the %I, %Q, %M, %T, %G, %S, and %SA - %SC transition
bits as bytes

IB_TRANS(x)

QB_TRANS(x)

MB_TRANS(x)

TB_TRANS(x)

GB_TRANS(x)

SB_TRANS(x)

SAB_TRANS(x)

SBB_TRANS(x)

SCB_TRANS(x)

3-26 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Macros for accessing the %I, %Q, %AI, %AQ Diagnostic memory

Definitions used with macros that access Analog Input DIAGNOSTIC memory(s)

HI_ALARM_MSK 0x02

LO_ALARM_MSK 0x01

AI_OVERRANGE_MSK 0x08

AI_UNDERRANGE_MSK 0x04

Definitions used with macros that access Analog Output DIAGNOSTIC memory(s)

AQ_OVERRANGE_MSK 0x40

AQ_UNDERRANGE_MSK 0x20

Diagnostic memory macros

Note: Discrete diagnostic memory is organized so that there is one fault bit per

discrete memory location. Analog diagnostic memory is organized so that

there is one byte of memory for each analog input or output channel (for

example there is one diagnostic byte associated with the analog input %AQ1).

For analog diagnostic memory, use the mask definitions above to determine

the type of analog fault for a particular analog input or output channel.

BIT_TST_I_DIAG(x)

BIT_TST_Q_DIAG(x)

IB_DIAG(x)

QB_DIAG(x)

AIB_DIAG(x)

AQB_DIAG(x)

AI_HIALRM(x)

AI_LOALRM(x)

Note: AIB_FAULT and AQB_FAULT are non-zero for conditions that set a fault

contact or generate a fault entry in the I/O fault table such as Overrange,

Underrange.

AIB_FAULT(x)

AQB_FAULT(x)

AI_OVERRANGE(x)

AI_UNDERRANGE(x)

AQ_OVERRANGE(x)

AQ_UNDERRANGE(x)

Macros for accessing RACK/SLOT/BLOCK fault information

See descriptions of the corresponding functions in the ‖Reference Memory Functions‖

section on page 3-86.

RACKX(r) rackX(r) page 3-98

SLOTX(r,s) slotX(r,s) page 3-99

BLOCKX(r,s,b,sba) blockX(r,s,b,sba) page 3-100

RSMB(x) rsmb(x) page 3-101

GFK-2259E Chapter 3 Writing a C Application 3-27

3

Standard Library Routines
Appendix A contains a complete list of the standard C library routines supported by

C blocks. The routines implement ANSI C functionality unless otherwise noted.

The printf function is not supported. You should use the message mode functions

described later in this section to access the PLC serial port.

PACSystems Functions

Additional functions are provided by the C Toolkit in support of the PACSystems

CPU’s operations. These functions are defined in the header file included by

PACRxPLC.h. These header files are:

Header File Functions Page

ctkPlcBus.h Bus Read/Write Functions 3-34

ctkPlcErrno.h Errno Functions 3-104

ctkPlcFault.h Fault Table Service Request Functions 3-73

ctkPlcFunc.h General PLC Functions 3-28

Miscellaneous General Functions 3-84

Service Request Functions 3-48

ctkPlcUtil.h Utility Function 3-103

ctkRefMem.h Reference Memory Functions 3-86

ctkVariables.h PLC Variable Access 3-105

These files are located in the following subdirectory:

 PACSystemsCtoolkit\Targets\CommonFiles\IncCommon

Descriptions of the functions are provided in the sections that follow.

3-28 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

General PLC Functions

The following functions make PLC features available to C applications. These

functions are described in ctkPlcFunc.h.

PLCC_read_elapsed_clock

T_INT32 PLCC_read_elapsed_clock (struct elapsed_clock_rec

*pElapsedClockRec);

struct elapsed_clock_rec {

 T_DWORD seconds

 T_WORD hundred usecs;

};

Description

This function returns the current time from the PLC in memory pointed to by

pElapsedClockRec, which is the time since the PLC powered up.

InParam pElapsedClockRec

Pointer to structure containing the value of the PLC's elapsed clock

ReturnVal

The return value is 0 if successful, -1 if unsuccessful.

PLCC_read_nano_elapsed_clock

T_INT32 PLCC_read_nano_elapsed_clock (struct nano_elapsed_clock_rec

 *pNanoElapsedClockRec);

struct nano_elapsed_clock_rec {

 T_DWORD seconds

 T_DWORD nanoseconds;

};

Description

This function returns the current time, in nanosecond units, from the PLC in memory

pointed to by pNanoElapsedClockRec, which is the time since the PLC powered up.

InParam pNanoElapsedClockRec

Pointer to structure containing the value of the PLC's elapsed clock in nanosecond
units.

ReturnVal

The return value is 0 if successful, -1 if unsuccessful.

GFK-2259E Chapter 3 Writing a C Application 3-29

3

PLCC_chars_in_printf_q

Obsolete: Use PLCC_CharsInMessageWriteQ function.

T_INT32 PLCC_chars_in_printf_q(void);

This function returns GEF_NOT_SUPPORTED.

PLCC_MessageWrite

T_INT32 PLCC_MessageWrite(T_INT32 port, char *buffer,

 T_INT32 numBytes);

#define PORT1 0

#define PORT2 1

Description

Writes to a serial port on the PLC.

InParam port

Indicates which PLC serial port to write (i.e. PORT1, PORT2).

InParam buffer

Pointer to the buffer of data to write to the serial port.

InParam numBytes

Number of bytes to write (up to MESSAGE_BUFFER_SIZE).

ReturnVal

If successful, returns the number of bytes written. This may be less than the number

of bytes requested if the write queue fills.

Returns -1 for a bad parameter or if message mode is not configured for the specified

port.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-30 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc PLCC_MessageRead

T_INT32 PLCC_MessageRead(T_INT32 port, char *buffer,

 T_INT32 numBytes);

Description

Reads from the serial port input queue on the PLC.

InParam port

Indicates which PLC serial port to read (i.e. PORT1, PORT2).

InParam buffer

Pointer to the buffer to place the data read from the input queue.

InParam numBytes

Number of bytes to read (up to MESSAGE_BUFFER_SIZE).

ReturnVal

If successful, returns the number of bytes read. This may be less than the number of

bytes requested if it is larger than the number of bytes in the read queue.

Returns -1 for a bad parameter or if message mode is not configured for the specified

port.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-31

3

Proc PLCC_CharsInMessageWriteQ

T_INT32 PLCC_CharsInMessageWriteQ(T_INT32 port);

Description

Returns the number of bytes in the write queue.

InParam port

Indicates which PLC serial port to query (i.e. PORT1, PORT2).

ReturnVal

If successful, returns the number of bytes in the queue.

Returns -1 for a bad parameter or if message mode is not configured for the specified

port.

Errno

If there is an error, Errno is set by this function to give specific information on what

caused the error. Applications that use Errno should first call PLCC_ClearErrno to

ensure Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

Proc PLCC_CharsInMessageReadQ

T_INT32 PLCC_CharsInMessageReadQ(T_INT32 port);

Description

Returns the number of bytes in the read queue.

InParam port

Indicates which PLC serial port to query (i.e. PORT1, PORT2).

ReturnVal

If successful, returns the number of bytes in the queue.

Returns -1 for a bad parameter or if message mode is not configured for the specified

port.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-32 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_gen_alarm

T_INT32 PLCC_gen_alarm(T_WORD error_code, char *fault_string);

Description

This function puts the fault described by error_code and fault_string into the

controller fault table.

InParam error_code

Indicates the user specified error that is to be logged. The error code must be less
than 2048.

InParam fault_string

Pointer to a character string describing the fault. String must be NULL terminated and
less than 24 characters.

ReturnVal

This function will return 0 if successful and -1 if unsuccessful.

GFK-2259E Chapter 3 Writing a C Application 3-33

3

PLCC_get_plc_version

T_INT32 PLCC_get_plc_version(struct PLC_ver_info_rec *PLC_ver_info);

*** ALL DATA RETURNED FROM THE PLC (in the structure

` PLC_ver_info) NEEDS TO BE LOOKED AT IN HEXADECIMAL

` for proper interpretation

struct PLC_ver_info_rec {

 T_WORD family; /* Host PLC product line */

 T_WORD model; /* Specific Model of PLC */

 T_BYTE sw_ver; /* Major Version of PLC firmware */

 T_BYTE sw_rev; /* Minor Revision of PLC firmware */

};

/* Family value */

#define FAMILY_PACSYSTEMS 0x2002

/* Model numbers */

#define CPE_010 0x02 /* PACSystems RX7i 300Mhz PLC CPU */

#define CPE_020 0x04 /* PACSystems RX7i 700Mhz PLC CPU */

#define CRE_020 0x05 /* PACSystems RX7i 700Mhz Redundant PLC CPU */

#define CPE_030 0x06 /* PACSystems RX7i VME 700Mhz (Pentium M)

 PLC CPU */

#define CPE_040 0x08 /* PACSystems RX7i VME 1.8Ghz (Pentium M)

 PLC CPU */

#define CPU_310 0x0A /* PACSystems Rx3i PCI 300Mhz PLC CPU */

#define NIU_001 0x0C /* PACSystems Rx3i PCI 300Mhz NIU*/

#define CMU_310 0x0E /* PACSystems Rx3i PCI 300Mhz MaxOn CPU

Description

This function returns the PLC family, model, firmware version, and firmware revision.

InParam PLC_ver_info

Pointer to the structure of type PLC_ver_info. The PLC will return information
concerning its firmware version in each of the fields in this structure.

ReturnVal

The function will return 0 if successful and -1 if unsuccessful.

3-34 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Bus Read/Write Functions

The following functions based on the BUS functions available in ladder logic are

defined in ctkPlcBus.h. These functions are currently unsupported in the Rx3i and will

return a not-supported return value (-1). When reading the memory pointed to by

pStatus the following values are possible variables returned by these functions:

Variable Numeric Value

NOT_SUPPORTED -1

OPERATION_SUCCESSFUL 0

BUS_ERROR 1

MOD_DOES_NOT_EXIST 2

INVALID_MOD 3

START_ADDR_RANGE_ERR 4

END_ADDR_RANGE_ERR 5

EVEN_ADDR_ODD_CONFIG_ERR 6

ODD_ADDR_EVEN_CONFIG_ERR 7

WINDOW_NOT_ENABLED 8

INVALID_ACCESS_WIDTH 9

INVALID_PARAM 10

Note: The hardware configuration must be set up for the largest access for these

functions to complete with a successful status. For example, the module

memory region Interface Type must use Dword Access if any of the Dword

functions are used. However if only Word or Byte functions are used, the

Interface type can be Word Access. Similarly, if only byte functions are used,

the Interface type can be Byte Access. In addition, Word Access functions

must use only even addresses and Dword Access functions must be Dword

aligned (0, 4, 8, etc.)

Note: The subSlot value for most modules will be 0.

GFK-2259E Chapter 3 Writing a C Application 3-35

3

Proc PLCC_BUS_read_byte

T_INT32 PLCC_BUS_read_byte(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_BYTE *pBuffer, T_DWORD address);

Description

Read a byte from a device on the bus.

InParam rack

The rack number containing the module to access.

InParam slot

The slot number containing the module to access.

InParam subSlot

The sub-slot number of the module to access.

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pBuffer

Pointer to the byte read in from a device on the bus.

InParam address

Address of the byte to be read.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

3-36 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc PLCC_BUS_read_word

T_INT32 PLCC_BUS_read_word(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_WORD *pBuffer, T_DWORD address);

Description

Read a word from a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pBuffer

Pointer to the word read in from a device on the bus.

InParam address

Address of the word to be read.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

GFK-2259E Chapter 3 Writing a C Application 3-37

3

Proc PLCC_BUS_read_dword

T_INT32 PLCC_BUS_read_dword(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_DWORD *pBuffer, T_DWORD address);

Description

Read a dword from a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pBuffer

Pointer to the dword read in from a device on the bus.

InParam address

Address of the dword to be read.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

3-38 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc PLCC_BUS_read_block

T_INT32 PLCC_BUS_read_block(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 void *pBuffer, T_WORD length,

 T_DWORD address);

Description

Read a block from a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pBuffer

Pointer to the data area to put the data.

InParam length

Size of the data area in bytes.

InParam address

Start Address of the data area to be read.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

GFK-2259E Chapter 3 Writing a C Application 3-39

3

Proc PLCC_BUS_write_byte

T_INT32 PLCC_BUS_write_byte(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_BYTE value, T_DWORD address);

Description

Write a byte to a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

InParam value

Byte value to be written to a device on the bus.

InParam address

Address of the byte to be written.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

3-40 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc PLCC_BUS_write_word

T_INT32 PLCC_BUS_write_word(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_WORD value, T_DWORD address);

Description

Write a word to a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

InParam value

Word value to be written to a device on the bus.

InParam address

Address of the word to be written.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

GFK-2259E Chapter 3 Writing a C Application 3-41

3

Proc PLCC_BUS_write_dword

T_INT32 PLCC_BUS_write_dword(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_DWORD value, T_DWORD address);

Description

Write a dword to a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

InParam value

Dword value to be written to a device on the bus.

InParam address

Address of the dword to be written.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

3-42 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc PLCC_BUS_write_block

T_INT32 PLCC_BUS_write_block(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 void *pBuffer, T_WORD length,

 T_DWORD address);

Description

Write a block of data to a device on the bus

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

InParam pBuffer

Pointer to the data to be written to a device on the bus.

InParam length

Length of the data to written to a device on the bus in bytes.

InParam address

Address of the data to be written.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

GFK-2259E Chapter 3 Writing a C Application 3-43

3

BUS Semaphore Functions

The following functions are designed to enable semaphore handling on the bus.

These functions cannot be interrupted.

BUS_RMW (read, modify, write)

Note: The following definitions are used to define whether the mask parameter uses

an OR or AND operation on the data: BUS_OR, BUS_AND.

PLCC_BUS_RMW_byte

T_INT32 PLCC_BUS_RMW_byte(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_BYTE *pOriginalValue, T_WORD op_type,

 T_DWORD mask, T_DWORD address);

Description

Read Modify Write a byte to a device on the bus.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pOriginalValue

Pointer to the value before the read-modify-write operation

InParam op_type

Specifies whether the mask is ANDed or ORed with the data. BUS_OR or BUS_AND

InParam mask

Data mask.

InParam address

Address of the data to be written.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

3-44 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc PLCC_BUS_RMW_word

T_INT32 PLCC_BUS_RMW_word(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_WORD *pOriginalValue, T_WORD op_type,

 T_DWORD mask, T_DWORD address);

Description

Read Modify Write a word to a device on the bus

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above).

OutParam pOriginalValue

Pointer to the value before the read-modify-write operation.

InParam op_type

Specifies whether the mask is ANDed or ORed with the data. BUS_OR or BUS_AND

InParam mask

Data mask.

InParam address

Address of the data to be written.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

GFK-2259E Chapter 3 Writing a C Application 3-45

3

Proc PLCC_BUS_RMW_dword

T_INT32 PLCC_BUS_RMW_dword(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_DWORD *pOriginalValue, T_WORD op_type,

 T_DWORD mask, T_DWORD address);

Description

Read Modify Write a dword to a device on the bus

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam pOriginalValue

Pointer to the value before the read-modify-write operation

InParam op_type

Specifies whether the mask is ANDed or ORed with the data. BUS_OR or BUS_AND

InParam mask

Data mask.

InParam address

Address of the data to be written.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

3-46 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc PLCC_BUS_TST_byte
T_INT32 PLCC_BUS_TST_byte(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region,T_WORD *pStatus,

 T_BYTE *pSemaphoreOutput, T_DWORD address);

Description

This function reads a byte sized semaphore from the bus address and tests the least

significant bit. The semaphore output will be 0 is the semaphore is not obtained, 1 if it

is obtained. You must release this semaphore when it is no longer needed. To release

a semaphore, write 0 to the semaphore.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam semaphore_output

Results of locking semaphore

0 = not obtained

1 = obtained

InParam address

Address of the data to be written.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

GFK-2259E Chapter 3 Writing a C Application 3-47

3

Proc PLCC_BUS_TST_word
T_INT32 PLCC_BUS_TST_word(T_WORD rack, T_WORD slot, T_WORD subSlot,

 T_WORD region, T_WORD *pStatus,

 T_WORD *pSemaphoreOutput, T_DWORD address);

Description

This function reads a word-sized semaphore from the bus address and tests the least

significant bit. The semaphore output will be 0 is the semaphore is not obtained, 1 if it

is obtained. You must free this semaphore when it is no longer needed. To release a

semaphore, write 0 to the semaphore. The address must be word-aligned.

InParam rack

The rack number containing the module to access

InParam slot

The slot number containing the module to access

InParam subSlot

The sub-slot number of the module to access

InParam region

The region number describing the location of the BUS memory. This is set up in

hardware configuration for the module.

OutParam pStatus

Pointer to status variable (see common definition above)

OutParam semaphore_output

Results of locking semaphore

0 = not obtained

1 = obtained

InParam address

Address of the data to be written.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

3-48 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Service Request Functions

The following functions are patterned after the service request (SVC_REQ) function in

ladder logic and defined in ctkPlcFunc.h.

PLCC_const_sweep_timer
T_INT32 PLCC_const_sweep_timer(struct const_sweep_timer_rec

 *pConstSweepTimerRec);

/* input structure */

struct const_sweep_input_rec {

 T_WORD action;

 T_WORD timer_value;

};

/* structure with return value */

struct const_sweep_output_rec {

 T_WORD sweep mode;

 T_WORD current_time_value;

};

struct const_sweep_timer_rec {

 union {

 struct const_sweep_input_rec input;

 struct const_sweep_output_rec output;

 };const_sweep; /*Note: union name required with PACSystems */

};

/* sweep mode values - these determine which action is to be taken */

#define DISABLE_CONSTANT_SWEEP_MODE 0

#define ENABLE_CONSTANT_SWEEP_MODE 1

#define CHANGE_TIMER_VALUE 2

#define READ_TIMER_VALUE_AND_STATE 3

/* sweep mode return values */

#define CONSTANT_SWEEP_ENABLED 1

#define CONSTANT_SWEEP_DISABLED 0

Description

This function is the C interface to service request #1 (Change/Read Constant Sweep

Timer).

This function can be used to

 Disable constant sweep time mode

 Enable constant sweep time mode and use the old timer value

 Enable constant sweep time mode and use a new timer value

 Set a new timer value only

 Read constant sweep mode state timer and value

Setting sweep_mode to DISABLE_CONSTANT_SWEEP_MODE disables the

constant sweep timer. Setting sweep_mode to

ENABLE_CONSTANT_SWEEP_MODE enables the constant with the value in

GFK-2259E Chapter 3 Writing a C Application 3-49

3

sweep_timer, or keep the current value if the sweep_timer is 0. Setting the

sweep_mode to CHANGE_TIMER_VALUE changes the constant sweep timer to the

value in timer_value. Setting sweep_mode to READ_TIMER_VALUE_AND_STATE

sets sweep_enabled to 1 if the constant sweep timer is enabled, and sets the current

constant sweep timer value to the current_value.

In/OutParam pConstSweepTimerRec

Pointer to structure containing constant sweep timer record.

ReturnVal

This function returns 1 if successful and 0 if unsuccessful, and -1 if not supported.

PLCC_read_window_values

T_INT32 PLCC_read_window_values(struct read_window_values_rec

 *pReadWindowValuesRec);

/* window modes */

#define LIMITED_MODE 0

#define CONSTANT_MODE 1

#define RUN_TO_COMPLETION_MODE 2

/* structure with return values */

struct read_window_values_rec{

 T_BYTE controller_win_time;

 T_BYTE controller_win_mode; /* LIMITED_MODE, CONSTANT_MODE,

 RUN_TO_COMPLETION_MODE */

 T_BYTE backplane_comm_win_time;

 T_BYTE backplane_comm_win_mode; /* LIMITED_MODE, CONSTANT_MODE,

 RUN_TO_COMPLETION_MODE */

 T_BYTE background_win_time;

 T_BYTE background_win_mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE */

};

Description

This function is the C interface to service request #2 (Read Window Values). This

function will return the mode and time for the controller communications window, the

backplane communications window, and the background task window in the structure.

Note: The Series 90-70 referred to the Controller Communications window as the

Programmer Communications window. Also the 90-70 referred to the

Backplane Communications window as the System Communications Window.

The possible values for the mode fields are LIMITED_MODE, CONSTANT_MODE,

and RUN_TO_COMPLETION_MODE. The time fields contain the time values in

milliseconds.

OutParam pStatus

Pointer to structure containing record of the read window values.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

3-50 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_change_controller_comm_window

T_INT32 PLCC_change_controller_comm_window

 (struct change_controller_comm_window_rec

 *pChangeControllerCommWindowRec);

struct change_controller_comm_window_rec{

 T_BYTE time;

 T_BYTE mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE */

};

Description

This function is the C interface to service request #3 (Change Controller

Communications Window State and Values).

Note: The Series 90-70 documentation refers to the Controller Communications

window as the Programmer Communications window.

This function will change the Controller communications window state and timer to the

values specified in the structure. The mode will be changed to one of the three states

LIMITED_MODE, CONSTANT_MODE, or RUN_TO_COMPLETION_MODE

depending on the value in the mode field.

InParam pChangeControllerCommWindowRec

Pointer to structure containing change controller window record. The time value
should be from 1 to 255 milliseconds.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

GFK-2259E Chapter 3 Writing a C Application 3-51

3

PLCC_change_backplane_comm_window
T_INT32 PLCC_change_backplane_comm_window(struct

change_system_comm_window_rec

*pChangeBackplaneCommWindowRec);

struct change_system_comm_window_rec {

 T_BYTE time;

 T_BYTE mode;

};

/* window modes */

#define LIMITED_MODE 0

#define CONSTANT_MODE 1

#define RUN_TO_COMPLETION_MODE 2

Description

This function is the C interface to service request #4 (Change Backplane

Communications Window State and Values).

Note: The Series 90 documentation refers to the Backplane Communications

window as the System Communications Window.

This function will change the Backplane Communications Window state and timer to

the values specified in the structure. The mode will be changed to one of the three

states LIMITED_MODE, CONSTANT_MODE, or RUN_TO_COMPLETION_MODE

depending on the value in the mode field.

InParam pChangeBackplaneCommWindowRec

Pointer to structure containing backplane communications record. The time value

should be from 1 to 255 milliseconds.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

3-52 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_change_background_window
T_INT32 PLCC_change_background_window(struct

change_background_window_rec

 *pChangeBackgroundWindowRec);

struct change_background_window_rec {

 T_BYTE time;

 T_BYTE mode;

};

/* window modes */

#define LIMITED_MODE 0

#define CONSTANT_MODE 1

#define RUN_TO_COMPLETION_MODE 2

Description

This function is the C interface to service request #5 (Change_Background Window

State and Values). This function will change the background window state and timer

to the values specified in the structure. The mode will be changed to one of the three

states LIMITED_MODE, CONSTANT_MODE, or RUN_TO_COMPLETION_MODE

depending on the value in the mode field.

InParam pChangeBackgroundWindowRec

Pointer to structure containing background window record. The time value should be

from 1 to 255 milliseconds.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

GFK-2259E Chapter 3 Writing a C Application 3-53

3

PLCC_number_of_words_in_chksm
T_INT32 PLCC_number_of_words_in_chksm(struct

number_of_words_in_chksm_rec

 *pNumberofWordsInChksmRec);

struct number_word_of_words_in_chksm_rec {

 T_WORD read_set;

 T_WORD word_count;

};

#define READ_CHECKSUM_WORDS 0

#define SET_CHECKSUM_WORDS 1

Description

This function is the C interface to service request #6 (Change/Read Checksum Task

State and Number of Words to Checksum). This function will either read the current

checksum word count or set a new checksum word count depending on the value in

read_set. If read_set is READ_CHECKSUM then the function will read the current

word count and return it in word_count. If the read_set is SET_CHECKSUM then the

function will set the current word count to word_count rounded to the nearest multiple

of 8. To disable the checksums set the word_count to 0. The function will fail if the

read_write field is set to a value other than 0 or 1.

InParam pNumberOfWordsInChksmRec

Pointer to structure containing number of words in checksum record.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

3-54 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_tod_clock

T_INT32 PLCC_tod_clock(struct tod_clock_rec *pTodClockRec);

Data Formats

This function supports the following data formats:

#define NUMERIC_DATA_FORMAT 0

#define BCD_FORMAT 1

#define UNPACKED_BCD_FORMAT 2

#define PACKED_ASCII_FORMAT 3

#define POSIX_FORMAT 4

#define NUMERIC_DATA_FORMAT_4_DIG_YR 0x80

#define BCD_FORMAT_4_DIG_YR 0x81

#define UNPACKED_BCD_FORMAT_4_DIG_YR 0x82

#define PACKED_ASCII_FORMAT_4_DIG_YR 0x83

Day of the Week Definitions:
#define SUNDAY 1

#define MONDAY 2

#define TUESDAY 3

#define WEDNESDAY 4

#define THURSDAY 5

#define FRIDAY 6

#define SATURDAY 7

NUMERIC_DATA_FORMAT

Decimal values for fields. For example, '94 for the year would be 94 decimal in the

year field.

struct num_tod_rec{

 T_WORD year;

 T_WORD month;

 T_WORD day_of_month;

 T_WORD hours;

 T_WORD minutes;

 T_WORD seconds;

 T_WORD day_of_week;

};

GFK-2259E Chapter 3 Writing a C Application 3-55

3

BCD_FORMAT

Hexadecimal values for the fields. For example, '94 for the year would be 0x94.

struct BCD_tod_rec{

 T_BYTE year;

 T_BYTE month;

 T_BYTE day_of_month;

 T_BYTE hours;

 T_BYTE minutes;

 T_BYTE seconds;

 T_BYTE day_of_week;

 T_BYTE null;

};

struct BCD_tod_4_rec{

 T_BYTE year_lo;

 T_BYTE year_hi;

 T_BYTE month;

 T_BYTE day_of_month;

 T_BYTE hours;

 T_BYTE minutes;

 T_BYTE seconds;

 T_BYTE day_of_week;

};

UNPACKED_BCD_FORMAT

Two byte fields make up the word category. For example, '94 for the year is 9 in

yearhi and 4 in yearlo.

struct unpacked_BCD_rec{

 T_BYTE yearlo;

 T_BYTE yearhi;

 T_BYTE monthlo;

 T_BYTE monthhi;

 T_BYTE day_of_month_lo;

 T_BYTE day_of_month_hi;

 T_BYTE hourslo;

 T_BYTE hourshi;

 T_BYTE minslo;

 T_BYTE minshi;

 T_BYTE secslo;

 T_BYTE secshi;

 T_WORD day_of_week;

};

struct unpacked_bcd_tod_4_rec{

 T_WORD huns_year;

 T_WORD tens_year;

 T_WORD month;

 T_WORD day_of_month;

 T_WORD hours;

 T_WORD minutes;

 T_WORD seconds;

 T_WORD day_of_week;

};

3-56 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PACKED_ASCII_FORMAT

Two ASCII character fields make up the word category. For example, 94 for the year

is '9' in yearhi and '4' in yearlo.

struct ASCII_tod_rec{

 T_BYTE yearhi;

 T_BYTE yearlo;

 T_BYTE space1;

 T_BYTE monthhi;

 T_BYTE monthlo;

 T_BYTE space2;

 T_BYTE day_of_month_hi;

 T_BYTE day_of_month_lo;

 T_BYTE space3;

 T_BYTE hourshi;

 T_BYTE hourslo;

 T_BYTE colon1;

 T_BYTE minshi;

 T_BYTE minslo;

 T_BYTE colon2;

 T_BYTE secshi;

 T_BYTE secslo;

 T_BYTE space4;

 T_BYTE day_of_week_hi;

 T_BYTE day_of_week_lo;

};

struct ascii_tod_4_rec{

 T_BYTE hun_year_hi;

 T_BYTE hun_year_lo;

 T_BYTE year_hi;

 T_BYTE year_lo;

 T_BYTE space1;

 T_BYTE month_hi;

 T_BYTE month_lo;

 T_BYTE space2;

 T_BYTE day_of_month_hi;

 T_BYTE day_of_month_lo;

 T_BYTE space3;

 T_BYTE hours_hi;

 T_BYTE hours_lo;

 T_BYTE colon1;

 T_BYTE minutes_hi;

 T_BYTE minutes_lo;

 T_BYTE colon2;

 T_BYTE seconds_hi;

 T_BYTE seconds_lo;

 T_BYTE space4;

 T_BYTE day_of_week_hi;

 T_BYTE day_of_week_lo;

};

/* Definitions to be used with “read_write” field */

READ_CLOCK 0

WRITE_CLOCK 1

struct tod_clock_rec{

 T_WORD read_write; /* READ_CLOCK or WRITE_CLOCK */

 T_WORD format; /* NUMERIC_DATA_FORMAT, BCD_FORMAT,

GFK-2259E Chapter 3 Writing a C Application 3-57

3

 UNPACKED_BCD_FORMAT,

PACKED_ASCII_FORMAT etc.

 (see above for additional formats)

 Note: All formats may not be supported

by a

 particular PLC target */

 union {

 struct num_tod_rec num_tod;

 struct BCD_tod_rec BCD_tod;

 struct BCD_tod_4_rec BCD_tod_4;

 struct unpacked_BCD_rec unpacked_BCD_tod;

 struct unpacked_bcd_tod_4_rec unpacked_BCD_tod_4;

 struct ASCII_tod_rec ASCII_tod;

 struct ascii_tod_4_rec ASCII_tod_4;

 struct timespec POSIX_tod; /* timespec is defined in sys/types.h

*/

 } record; /* Note: 90-70 C Toolkit did not name this union */

};

3-58 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Description

This function is the C interface to service request #7 (Change/Read Time-of-Day

Clock State and Values). If read_write is equal to READ_CLOCK then the function

will read the Time-of-Day Clock into the structure passed. If read_write is equal to

WRITE_CLOCK then the function will write the values in the structure to the

time_of_day_clock. The format will be based on the format field in the structure

(NUMERIC_DATA_FORMAT, BCD_FORMAT, UNPACKED_BCD_FORMAT, and

PACKED_ASCII_FORMAT). The function will fail in the following instances:

■ If read_write is some number other than 0 or 1

■ If format is some number other than 0 – 3

■ If data for a write does not match format

For all the formats, the hours are 24 hour and the days of the week are defined as

macros in ctkFuncPlc.h. The packed BCD format needs the null field to be 0, as

shown in the following example:

Example:

#include “PACRxPLC.h”

int GeFMain()

{

 struct tod_clock_rec data;

 data.read_write = 1;

 data.format = BCD_FORMAT;

 /* set the time and date to 1:13:08pm Tuesday August 9, 1994 */

 data.record.BCD_tod.year = 0x94;

 data.record.BCD_tod.month = 8;

 data.record.BCD_tod.day_of_month = 9;

 data.record.BCD_tod.hours = 0x13;

 data.record.BCD_tod.minutes = 0x13;

 data.record.BCD_tod.seconds = 8;

 data.record.BCD_tod.day_of_week = TUESDAY;

 data.record.BCD_tod.null = 0;

 PLCC_tod_clock (& data)

}

GFK-2259E Chapter 3 Writing a C Application 3-59

3

The unpacked format should have a digit in every byte (including the day of the week)

as shown in the following example:

Example:

#include “PACRxPLC.h”

int GeFMain()

{

 struct tod_clock_rec data;

 data.read_write = 1;

 data.format = UNPACKED_BCD_FORMAT;

 /* set the time and date to 1:13:08pm Tuesday August 9, 1994 */

 data.record.unpacked_BCD_tod.yearhi = 9;

 data.record.unpacked_BCD_tod.yearlo = 4;

 data.record.unpacked_BCD_tod.monthhi = 0;

 data.record.unpacked_BCD_tod.monthlo = 8;

 data.record.unpacked_BCD_tod.day_of_month_hi = 0;

 data.record.unpacked_BCD_tod.day_of_month_lo = 9;

 data.record.unpacked_BCD_tod.hourshi = 1;

 data.record.unpacked_BCD_tod.hourslo = 3;

 data.record.unpacked_BCD_tod.minshi = 1;

 data.record.unpacked_BCD_tod.minslo = 3;

 data.record.unpacked_BCD_tod.secshi = 0;

 data.record.unpacked_BCD_tod.secslo = 8;

 data.record.unpacked_BCD_tod.day_of_week = TUESDAY;

 PLCC_tod_clock (& data)

}

3-60 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

The packed ASCII format should have an ASCII character in every byte as shown in

the following example:

Example:

#include “PACRx PLC.h”

int GeFMain()

{

 struct tod_clock_rec data;

 data.read_write = 1;

 data.format = PACKED_ASCII_FORMAT;

 /* set the time and date to 1:13:08pm Tuesday August 9, 1994 */

 data.record.ASCII_tod.yearhi = „9‟;

 data.record.ASCII_tod.yearlo = „4‟;

 data.record.ASCII_tod.space1 = „ ‟;

 data.record.ASCII_tod.monthhi = „0‟;

 data.record.ASCII_tod.monthlo = „8‟;

 data.record.ASCII_tod.space2 = „ ‟;

 data.record.ASCII_tod.day_of_month_hi = „0‟;

 data.record.ASCII_tod.day_of_month_lo = „9‟;

 data.record.ASCII_tod.space3 = „ ‟;

 data.record.ASCII_tod.hourshi = „1‟;

 data.record.ASCII_tod.hourslo = „3‟;

 data.record.ASCII.tod.colon1 = „:‟;

 data.record.ASCII_tod.minshi = „1‟;

 data.record.ASCII_tod.minslo = „3‟;

 data.record.ASCII_tod.colon2 = „:‟;

 data.record.ASCII_tod.secshi = „0‟;

 data.record.ASCII_tod.secslo = „8‟;

 /* place 0 ASCII (30 hex) in the high byte for the number */

 data.record.ASCII_tod.day_of_weekhi = „0‟;

 /* place TUESDAY(3) plus 30 hex into the lo */

 /* byte to make the number an ASCII character */

 data.record.ASCII_tod.day_of_weeklo = TUESDAY+0x30;

 PLCC_tod_clock_rec (& data)

}

In/OutParam pTodClockRec

Pointer to structure containing time of day clock record.

ReturnVal

This function returns 1 if successful, 0 if unsuccessful or -1 if not supported.

GFK-2259E Chapter 3 Writing a C Application 3-61

3

PLCC_reset_watchdog_timer

T_INT32 PLCC_reset_watchdog_timer(void);

Description

This function is the C interface to service request #8 (Reset Watchdog Timer). This

function will reset the watchdog timer during the sweep. When the watchdog timer

expires, the PLC shuts down without warning. This function allows the timer to be

refreshed during a time-consuming task.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

Caution

Be careful resetting the watchdog timer. It may affect the
process.

PLCC_time_since_start_of_sweep
T_INT32 PLCC_time_since_start_of_sweep(struct

time_since_start_of_sweep_rec

 *pTimeSinceStartofSweepRec);

struct time_since_start_of_sweep_rec {

 T_WORD time_since_start_of_sweep;

};

Description

This function is the C interface to service request #9 (Read Sweep Time from

Beginning of Sweep). The function will read the time in milliseconds from the

beginning of the sweep.

InParam pTimeSinceStartOfSweepRec

Pointer to structure containing the time since the start of sweep.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

3-62 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_nano_time_since_start_of_sweep

T_INT32 PLCC_nano_time_since_start_of_sweep

 (struct nano_time_since_start_of_sweep_rec

 *pNanoTimeSinceStartOfSweepRec);

struct nano_time_since_start_of_sweep_rec{

 T_DWORD time_since_start_of_sweep;

};

Description

Read Sweep Time from the Beginning of Sweep in nanosecond units. This service

request will get the time in nanoseconds since the start of the sweep.

InParam pNanoTimeSinceStartOfSweepRec

Pointer to structure containing the time in nanoseconds since the start of sweep.

ReturnVal

 1 if successful

 0 if unsuccessful

-1 if not supported

PLCC_read_folder_name

T_INT32 PLCC_read_folder_name(struct read_folder_name_rec

*pReadFolderNameRec);

struct read_folder_name {

 char folder_name[MAX_FOLDER_NAME_LENGTH]; /* NULL terminated */

};

#define MAX_FOLDER_NAME_LENGTH 32

Description

This function is the C interface to the PLC similar to service request #10 (Read Folder

Name), which only supports a folder name length of 8 characters, including NULL

terminator. This function supports 32 characters, which includes one NULL terminator

character. This function will return the application folder name as a NULL terminated

string.

OutParam pReadFolderNameRec

Pointer to structure containing the folder name.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

GFK-2259E Chapter 3 Writing a C Application 3-63

3

PLCC_read_PLC_ID

T_INT32 PLCC_read_PLC_ID(struct read_PLC_ID_rec *pReadPlcIdRec);

struct read_PLC_ID_rec {

 char PLC_ID[8];

};

Description

This function is based on service request #11 (Read PLC ID). The function returns the

name of the PACSystems controller (in ASCII).

OutParam pReadPlcIdRec

Pointer to structure containing the PLC Id.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

PLCC_read_PLC_state

T_INT32 PLCC_read_PLC_state(struct read_PLC_state_rec

*pReadPLCStateRec);

struct read_PLC_state_rec {

 T_WORD state;

};

#define RUN_DISABLED 1

#define RUN_ENABLED 2

Description

This function is based on service request #12 (Read PLC Run State). This function

returns the PLC run state (RUN_DISABLED or RUN_ENABLED).

OutParam pReadPlcStateRec

Pointer to structure containing the PLC state.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

3-64 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_shut_down_plc

T_INT32 PLCC_shut_down_plc(T_WORD numberOfSweeps);

Description

This function is the C interface to service request #13 (Shut Down/Stop PLC). The

function stops the PLC at the end of the current sweep if numberOfSweeps is equal

to 0. All outputs go to their designated default states at the beginning of the next

sweep and the ―STOPPED by SVC 13‖ information fault will be logged in the controller

fault table. The numberOfSweeps parameter determines the number of full sweeps

that should occur before shutting down the PLC. This is normally set to 0.

InParam numberOfSweeps

Number of full sweeps that should occur before shutting down the PLC. This is

normally set to 0.

ReturnVal
The function will return 1 if successful, and 0 if unsuccessful.

GFK-2259E Chapter 3 Writing a C Application 3-65

3

PLCC_mask_IO_interrupts

T_INT32 PLCC_mask_IO_interrupts(struct mask_IO_interrupts_rec

 *pMaskIoInterruptsRec);

struct mask_IO_interrupts_rec {

 T_WORD mask;

 T_WORD memory_type;

 T_WORD memory_address;

};

/* Possible values for the “mask” element */

#define MASK 1

#define UNMASK 0

/* Valid memory types */

#define IBIT 70

#define AIMEM 10

All offsets are 1-based: %I1=1, %I2=2, ... %AI1=1, %AI2=2, ...

Discrete offsets and lengths are in bits and must be byte aligned.

 1, 9, 17, 25, ... are valid for offsets

 2-8, 10-16, 18-24, ... are invalid for offsets

Analog offsets and lengths must be in words.

Description

This function is the C interface to service request #17 (Mask/Unmask I/O Interrupt).

The function will mask or unmask interrupts from an input module according to the

value in mask (MASK or UNMASK). The memory_type parameter specifies the

memory type of the input to mask or unmask and can have a value of %I (IBIT) or %AI

(AIMEM). The address specified must match a PACSystems input module with

maskable channel and interrupts enabled.

InParam pMaskIoInterruptsRec

Pointer to structure containing mask I/O interrupt information.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

3-66 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_mask_IO_interrupts_ext

Note: Firmware version 3.50 or higher is required for this function.

struct mask_IO_interrupts_ext_rec{

 T_WORD action; /* MASK or UNMASK */

T_WORD memory_type; /* Address of input interrupt trigger */

 T_DWORD memory_offset;

};

extern T_INT32 PLCC_mask_IO_interrupts_ext(struct

 mask_IO_interrupts_ext_rec

/* Possible values for the “action” element */

#define MASK 1

#define UNMASK 0

/* Valid memory type */

#define PLCVAR_MEM 262 (for use with Variables)

#define IBIT 70

#define AIMEM 10

All offsets are 1-based: %I1=1, %I2=2, ... %AI1=1, %AI2=2, ...

Discrete offsets and lengths are in bits and must be byte aligned.

1, 9, 17, 25, ... are valid for offsets

2-8, 10-16, 18-24, ... are invalid for offsets

Analog offsets and lengths must be in words.

Description

This function is based on the MASK_IO_INTR function block. It is used to mask or

unmask an interrupt from an I/O board.

When the interrupt is masked, the CPU processes the interrupt but does not schedule

the associated logic for execution. When the interrupt is unmasked, the CPU

processes the interrupt and schedules the associated logic for execution. When the

CPU transitions from Stop to Run, the interrupt is unmasked.

This function provides PLC variable access along with reference addresses having

32-bit offset as input. Memory type and offset specify the address of an input interrupt

trigger on an input module that supports interrupts. To specify an IO variable as an

input to a routine, use the PLC_VAR_MEM memory type and the address of the

variable record as the offset. For details on the use of PLC_VAR_MEM, see

page 3-86.

InParam pMaskIoInterruptsExtRec

Pointer to structure containing mask I/O interrupt information.

ReturnVal

 1 if successful, 0 if unsuccessful, -1 if not supported

Errno

This function sets Errno if reference memory is out of range. See cpuErrno.h for

possible values.

GFK-2259E Chapter 3 Writing a C Application 3-67

3

PLCC_read_IO_override_status

T_INT32 PLCC_read_IO_override_status(struct

read_IO_override_status_rec

 *pReadOverrideStatusRec);

struct read_IO_override_status_rec {

 T_WORD override_status;

};

#define OVERRIDES_SET 1

#define NO_OVERRIDES_SET 0

Description

This function is the C interface to service request #18 (Read I/O Override Status). The

function will return the override_status (OVERRIDES_SET, or

NO_OVERRIDES_SET).

OutParam pReadIoOverrideStatusRec

Pointer to structure containing override status information.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

PLCC_set_run_enable

T_INT32 PLCC_set_run_enable(struct set_run_enable_rec

*pSetRunEnableRec);

struct set_run_enable_rec {

 T_WORD enable;

};

#define RUN_ENABLED 1

#define RUN_DISABLED 2

Description

This function is the C interface to service request #19 (Set Run Enable/Disable). The

function will set the PLC in either RUN_ENABLED or RUN_DISABLED depending on

what value was passed in the structure. Use SVCREQ function #19 to permit the
ladder program to control the RUN mode of the CPU.

InParam pSetRunEnableRec

Pointer to structure containing enable run value.

ReturnVal

The function will return 1 if successful and 0 if unsuccessful.

3-68 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_mask_timed_interrupts
T_INT32 PLCC_mask_timed_interrupts(struct mask_timed_interrupts_rec

 *pMaskTimedInterruptRec);

struct mask_timed_interrupts_rec {

 T_WORD action;/* READ_INTERRUPT_MASK or WRITE_INTERRUPT_MASK */

 T_WORD status; /* if action is READ_INTERRUPT_MASK then this

 field has MASK or UNMASK as the return value

 if the action is WRITE_INTERRUPT_MASK then

 set this field to MASK or UNMASK */

};

/* Possible “action” field values */

#define READ_INTERRUPT_MASK 0

#define WRITE_INTERRUPT_MASK 1

/* Possible “status” field values */

#define MASK 1

#define UNMASK 0

Description

This function is the C interface to service request #22 (Mask/Unmask Timed

Interrupts). Use this function to mask or unmasked timed interrupts and to read the

current mask. When the interrupts are masked, the PLC CPU will not execute any

interrupt block that is associated with a timed interrupt. Timed interrupts are

masked/unmasked as a group. They cannot be individually masked or unmasked.

To read current mask, set action to READ_INTERRUPT_MASK.

To change current mask to unmask timed interrupts, set action to

WRITE_INTERRUPT_MASK and status to UNMASK.

To change current mask to mask timed interrupts, set action to

WRITE_INTERRUPT_MASK and status to MASK.

Successful execution will occur unless some number other than 0 or 1 is entered as

the requested operation or mask value.

In/OutParam pMaskTimedInterruptsRec

Pointer to structure containing masked timed interrupt values.

ReturnVal

1 if successful

0 if unsuccessful

-1 if not supported

GFK-2259E Chapter 3 Writing a C Application 3-69

3

PLCC_sus_res_HSC_interrupts
T_INT32 PLCC_sus_res_HSC_interrupts(struct sus_HSC_interrupts_rec

 *pSusResHscInterruptsRec);

struct sus_res_HSC_interrupts_rec {

 T_WORD action; /* SUSPEND or RESUME */

 T_WORD memory_type;

 T_WORD reference_address

};

/*Valid memory types */

#define IBIT 70

#define AIMEM 10

/*Valid “action” values */

#define RESUME 0

#define SUSPEND 1

All offsets are 1-based: %I1=1, %I2=2, ... %AI1=1, %AI2=2, ...

Discrete offsets and lengths are in bits and must be byte aligned.

1, 9, 17, 25, ... are valid for offsets

2-8, 10-16, 18-24, ... are invalid for offsets

Analog offsets and lengths must be in words.

Description

This function is based on service request #32 (Suspend High Speed Counter

Interrupts). The function will enable or disable the high speed counter interrupts for a

given address and memory type.

InParam pSusResHscInterruptsRec

Pointer to structure containing high speed counter interrupt suspension/resumption

values.

ReturnVal

 1 if successful

 0 if unsuccessful

-1 if not supported

3-70 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_sus_res_interrupts_ext

Note: Firmware version 3.50 or higher is required for this function.

struct sus_res_interrupts_ext_rec{

 T_WORD action; /* SUSPEND or RESUME */

 T_WORD memory_type; /* Address of the interrupt trigger */

 T_DWORD memory_offset;

};

extern T_INT32 PLCC_sus_res_interrupts_ext(struct

sus_res_interrupts_ext_rec

*pSusResInterruptsExtRec);

/* Possible values for the “action” element */

#define SUSPEND 1

#define RESUME 0

/* Valid memory type */

#define PLCVAR_MEM 262 (for use with Variables)

#define IBIT 70

#define AIMEM 10

All offsets are 1-based: %I1=1, %I2=2, ... %AI1=1, %AI2=2, ...

Discrete offsets and lengths are in bits and must be byte aligned.

1, 9, 17, 25, ... are valid for offsets

2-8, 10-16, 18-24, ... are invalid for offsets

Analog offsets and lengths must be in words.

Description

This function is based on the SUSP_IO_INTR function block. It is used to suspend or

resume an I/O interrupt. Currently it is supported only for High Speed Counter.

This function provides PLC variable access along with reference addresses having

32-bit offset as input. Memory type and offset specify the address of an input interrupt

trigger on an input module that supports interrupts. To specify a PLC variable as an

input to a routine, use the PLC_VAR_MEM memory type and the address of the

variable record as the offset. For details on the use of PLC_VAR_MEM, see

page 3-86.

When used for reference addresses, all offsets are 1-based: %I1=1, %I2=2, ...

%AI1=1, %AI2=2, ...

Discrete offsets and lengths are in bits and must be byte aligned.

1, 9, 17, 25, ... are valid for offsets

2-8, 10-16, 18-24, ... are invalid for offsets

Analog offsets and lengths must be in words.

InParam pSusResInterruptsExtRec

A pointer to Suspend Resume Interrupts Extn record.

GFK-2259E Chapter 3 Writing a C Application 3-71

3

ReturnVal

 1 if successful

 0 if unsuccessful

-1 if not supported

Errno

This function sets Errno if reference memory is out of range. See cpuErrno.h for

possible values.

PLCC_get_escm_status

INT32 PLCC_get_escm_status (struc escm_status_rec *pEscmStatusRec);

struc escm_status_rec {

 T_WORD port_number;

 T_WORD port_status;

};

#define port_1 1

#define port_2 2

Description

If the function return value is zero (0), the function was not successful, usually

indicating that the PLC does not support ESCM (embedded serial communications

module) ports (see Note below). If the function return value is one (1), the function

was successful.

This function also returns a status word for Ports 1 or 2 (word port_status). The bit

values for that word are shown in the following table:

Port_Status for the PLCC_get_escm_status Function

Port Status Meaning

bit 0 PORTN_OK: Requested port is ready. If value is 1, the port is ready. If value is
0, the port is not usable.

bit 1 PORTN_ACTIVE: There is activity on this port. If value is 1, the port is active. If
value is 0, the port is inactive.

bit 2 PORTN_DISABLED: Requested port is disabled. If value is 1, the port is
disabled. If value is 0, the port is enabled.

bit 3 PORTN_FUSE_BLOWN: Requested port’s fuse is blown (for Port 2) or supply
voltage is not within range (for Port 1). If value is 1, the fuse is blown (or voltage
not within range). If value is 0, the fuse (or supply voltage) is okay.

Note: Because the ESCM is not supported on the PACSystems CPUs, this function

always returns a value of 0.

OutParam pEscmStatusRec

A pointer to an escm_status_rec.

ReturnVal

1 if successful

0 if unsuccessful or ESCM is not supported.

3-72 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_set_application_redundancy_mode

Note: CPU firmware version 5.00 or higher is required for this function.

extern T_INT32 PLCC_set_application_redundancy_mode(T_WORD mode);

/* Possible values for the redundancy mode. */

#define BACKUP_MODE 0

#define ACTIVE_MODE 1

Description

Note: The PLCC_set_application_redundancy_mode function is recognized only in

non-HSB (hot standby) CPUs. (These CPUs have a ―CPE‖ or ―CPU‖

designation.)

This function is intended for use in user-developed redundancy applications. In these

systems, the application logic coordinates between CPUs that act as redundant

partners, and determines which CPU is the active unit and which are backup units.

This function is not needed for HSB (CRE) CPUs, because the redundancy firmware

in those CPUs automatically adjusts the active/backup role of each Ethernet interface

that is configured for redundant IP operation.

This service request sends a role switch command to all Ethernet interfaces in the

PLC that are configured for redundant IP operation. When a redundancy role switch

occurs, the backup CPU becomes active and begins responding to the Redundant IP

address in addition to its direct IP address. The formerly active CPU switches to

backup and stops communicating on the network using the Redundant IP address.

PLCC_set_application_redundancy_mode has no effect on Ethernet interfaces that

are not configured for redundant IP operation.

For information on Ethernet redundancy operation, refer to the Ethernet TCP/IP

Communications for PACSystems User’s Manual, GFK-2224.

InParam mode

The requested redundancy mode: Use 0 for backup mode, or 1 for active mode.

ReturnVal

This function will return 1 if successful and 0 if unsuccessful.

GFK-2259E Chapter 3 Writing a C Application 3-73

3

Fault Table Service Request Functions

The following functions access the fault table. These functions are defined in

ctkPlcFault.h.

The following definitions and structures are common to the Fault Table Service

Request Functions:

#define NUM_LEGACY_PLC_FAULT_ENTRIES 16

#define NUM_LEGACY_IO_FAULT_ENTRIES 32

#define PLC_FAULT_TABLE 0

#define IO_FAULT_TABLE 1

#define PLC_EXT_FAULT_TABLE 0x80

#define IO_EXT_FAULT_TABLE 0x81

/*

 * NOTE: time stamps are in BCD format

 */

struct time_stamp_rec{

 T_BYTE second; /* BCD format, seconds in low-order nibble, */

 /* tens of seconds in high-order nibble. */

 T_BYTE minute; /* BCD format, same as for seconds. */

 T_BYTE hour; /* BCD format, same as for seconds. */

 T_BYTE day; /* BCD format, same as for seconds. */

 T_BYTE month; /* BCD format, same as for seconds. */

 T_BYTE year; /* BCD format, same as for seconds. */

};

struct ext_time_stamp_rec{

 T_BYTE second; /* BCD format, seconds in low-order nibble, */

 /* tens of seconds in high-order nibble. */

 T_BYTE minute; /* BCD format, same as for seconds. */

 T_BYTE hour; /* BCD format, same as for seconds. */

 T_BYTE day; /* BCD format, same as for seconds. */

 T_BYTE month; /* BCD format, same as for seconds. */

 T_BYTE year; /* BCD format, same as for seconds. */

 T_WORD millisecond; /* BCD format, 0HTO ms format, milliseconds */

 /* in low-order nibble (xxxO), tens next */

 /* (xxTx), hundreds next (xHxx). */

};

struct PLC_flt_address_rec{

 T_BYTE rack;

 T_BYTE slot;

 T_WORD task;

};

struct IO_flt_address_rec{

 T_BYTE rack;

 T_BYTE slot;

 T_BYTE IO_bus;

 T_BYTE block;

 T_WORD point;

};

struct reference_address_rec{

 T_BYTE memory_type;

 T_WORD offset;

};

3-74 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

/* Note: this is the long PLC fault entry type */

struct PLC_fault_entry_rec{

 T_BYTE long_short;

 T_BYTE reserved[3];

 struct PLC_flt_address_rec PLC_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_WORD error_code;

 T_WORD fault_specific_data[12];

 struct time_stamp_rec time_stamp;

};

struct IO_fault_entry_rec{

 T_BYTE long_short;

 struct reference_address_rec reference_address;

 struct IO_flt_address_rec IO_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_BYTE fault_category;

 T_BYTE fault_type;

 T_BYTE fault_description;

 T_BYTE fault_specific_data[21];

 struct time_stamp_rec time_stamp;

};

struct PLC_ext_fault_entry_rec{

 T_BYTE long_short;

 T_BYTE reserved[3];

 struct PLC_flt_address_rec PLC_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_WORD error_code;

 T_WORD fault_specific_data[12];

 struct ext_time_stamp_rec time_stamp;

 T_WORD fault_id;

};

struct IO_ext_fault_entry_rec{

 T_BYTE long_short;

 struct reference_address_rec reference_address;

 struct IO_flt_address_rec IO_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_BYTE fault_category;

 T_BYTE fault_type;

 T_BYTE fault_description;

 T_BYTE fault_specific_data[21];

 struct ext_time_stamp_rec time_stamp;

 T_WORD fault_id;

};

GFK-2259E Chapter 3 Writing a C Application 3-75

3

PLCC_clear_fault_tables

T_INT32 PLCC_clear_fault_tables(struct clear_fault_tables_rec *x);

struct clear_fault_tables_rec {

 T_WORD table;

};

/* Valid “table” values */

#define PLC_FAULT_TABLE 0

#define IO_FAULT_TABLE 1

Description

This function is the C interface to service request #14 (Clear Fault Tables). The

function will clear the fault table according to the value (PLC_FAULT_TABLE or

IO_FAULT_TABLE).

InParam x

Pointer to structure which indicates whether to clear the PLC or the I/O fault table.

ReturnVal

The function returns 1 if successful and 0 if unsuccessful.

PLCC_read_last_fault

INT32 PLCC_read_last_fault(struct read_last_fault_rec *x);

struct read_last_fault_rec {

 T_WORD table;

 union {

 struct PLC_entry_rec PLC_entry;

 struct IO_entry_rec IO_entry_rec;

 } faultEntry; /*Note: 90-70 C Toolkit did not require union name */

};

/* Valid “table” values */

#define PLC_FAULT_TABLE 0

#define IO_FAULT_TABLE 1

Description

This function is the C interface to service request #15 (Read Last-Logged Fault Table

Entry). The function will return the last fault table entry of the table specified in the

table field (PLC_FAULT_TABLE, or IO_FAULT_TABLE).

In the return data, the long/short indicator defines the quantity of fault data present in

the fault entry. In the controller fault table, a long/short value of 00 represents 8 bytes

of fault extra data present in the fault entry, and 01 represents 24 bytes of fault extra

data. In the I/O fault table, 02 represents 5 bytes of fault specific data, and 03

represents 21 bytes.

InParam x

Pointer to structure containing record of last PLC and I/O fault.

Return Data

The function returns a 1 if successful and a 0 if unsuccessful.

3-76 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_read_fault_tables

T_INT32 PLCC_read_fault_tables(struct read_fault_tables_rec *x);

struct read_fault_tables_rec {

 T_WORD table;

 T_WORD zero;

 T_WORD reserved[13];

 struct tine_stamp_rec time_since_clear;

 T_WORD num_faults_since_clear;

 T_WORD num_faults_in_queue;

 T_WORD num_faults_read;

 union {

 struct PLC_entry_rec PLC_faults[NUM_LEGACY_PLC_FAULT_ENTRIES];

 struct IO_entry_rec IO_faults[NUM_LEGACY_IO_FAULT_ENTRIES];

 }faultEntry; /* 90-70 C Toolkit did not require union name */

};

#define PLC_FAULT_TABLE 0

#define IO_FAULT_TABLE 1

Description

This function is the C interface to service request #20 (Read Fault Tables). The

function will read the fault table specified in the table field (PLC_FAULT_TABLE or

IO_FAULT_TABLE). The function will return the table in an array of PLC_faults or

IO_faults. The zero field and the reserved fields do not hold fault data. The
time_since_clear fields are BCD numbers with seconds in the low order nibble and

tens of seconds in the high order nibble. The num_faults_since_clear field shows

the number of faults that have occurred since the table was last cleared. The
num_faults_read field shows the number of faults read into the arrays for I/O and

PLC faults; there is room for the entire table, but only the num_faults_read field

will have valid data.

In the return data, the long/short indicator defines the quantity of fault data present in

the fault entry. In the controller fault table, a long/short value of 00 represents 8 bytes

of fault extra data present in the fault entry, and 01 represents 24 bytes of fault extra

data. In the I/O fault table, 02 represents 5 bytes of fault specific data, and 03

represents 21 bytes.

This function provides a maximum of 16 controller fault table entries and 32 I/O fault

table entries. If the fault table read is empty, no data is returned.

InParam x

Pointer to structure containing record of all current PLC or I/O fault table entries.

Return Data

The function will return 1 if successful, and 0 if unsuccessful.

GFK-2259E Chapter 3 Writing a C Application 3-77

3

PLCC_read_last_ext_fault

T_INT32 PLCC_read_last_ext_fault(struct read_last_ext_fault_rec *x);

struct read_last_ext_fault_rec {

 T_WORD table; /* PLC_EXT_FAULT_TABLE or IO_EXT_FAULT_TABLE */

 union {

 struct PLC_ext_fault_entry_rec PLC_entry;

 struct IO_ext_fault_entry_rec IO_entry; } faultEntry; /* note:

90-70 C Toolkit did not require name for union */

};

/* Use the following definitions for “table” */

#define PLC_EXT_FAULT_TABLE 0x80

#define IO_EXT_FAULT_TABLE 0x81

Description

This service request will read the last entry logged in either the PLC or I/O fault table

with the extended format. This function is the C interface to service request #15 when

the fault table entry value is either PLC_EXT_FAULT_TABLE or

IO_EXT_FAULT_TABLE.

InParam x

Pointer to structure containing extended record of last PLC and I/O fault.

ReturnVal

 1 if successful
 0 if unsuccessful
 -1 if not supported

3-78 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLCC_read_ext_fault_tables

T_INT32 PLCC_read_ext_fault_tables(struct read_ext_fault_tables_rec

*x);

struct read_ext_fault_tables_rec {

 T_WORD table; /* PLC_EXT_FAULT_TABLE or IO_EXT_FAULT_TABLE */

 T_WORD start_index;

 T_WORD number_of_entries_to_read;

 T_WORD reserved[12];

 struct time_stamp_rec time_since_clear;

 T_WORD num_faults_since_clear;

 T_WORD num_faults_in_queue;

 T_WORD num_faults_read;

 T_WORD PlcName[16];

 union{

 struct PLC_ext_fault_entry_rec PLC_faults[1];

 struct IO_ext_fault_entry_rec IO_faults[1];

 } faultEntry; /* note: 90-70 C Toolkit did not require name for

union */

};

/* Note the faultEntry member structures are intended to be variable

size

 arrays. See Appendix A for instructions on how to change the size

of the

 array.*/

Description

This service request will read the entire PLC or I/O fault table in extended

format. This function is the C interface to service request #20 (Read Fault Tables)

when the table is specified to be either PLC_EXT_FAULT_TABLE or

IO_EXT_FAULT_TABLE.

InParam x

Pointer to structure containing record of all PLC or I/O fault tables in extended

format.

ReturnVal

 1 if successful

 0 if unsuccessful

 -1 if not supported

GFK-2259E Chapter 3 Writing a C Application 3-79

3

Module Communications

PLCC_comm_req

T_INT32 PLCC_comm_req(struct comm_req_rec *pCommReqRec);

struct status_addr {

 T_WORD seg_selector;

 T_WORD offset;

};

struct comm_req_command_blk_rec {

 T_WORD length;

 T_WORD wait;

 struct status_addr status;

 T_WORD idle_timeout;

 T_WORD max_comm_time;

 T_WORD data[128];

};

struct comm_req_rec {

 struct comm_req_command_blk_rec *command_blk;

 T_BYTE slot;

 T_BYTE rack;

 T_DWORD task_id;

 T_BYTE ft; /ft is set if the commreq fails */

};

Description

This function is based on the COMM_REQ ladder logic block.

InParam pCommReqRec

A pointer to communications request record.

ReturnVal

The function returns 1 if successful and 0 if unsuccessful.

3-80 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Ladder Function Blocks

PLCC_do_io
T_INT PLCC_do_io(struct do_io_rec * pDoIoRec);

struct do_io_rec {

 T_BYTE start_mem_type;

 T_WORD start_mem_offset;

 T_WORD length;

 T_BYTE alt_mem_type; /* must be set to NULL_SEGSEL if not used */

 T_WORD alt_mem_offset;

};

#define NULL_SEGSEL 0xFF (Only valid for alt_mem_type)

/* Valid memory types */

#define I_MEM 16

#define Q_MEM 18

#define R_MEM 8

#define AI_MEM 10

#define AQ_MEM 12

#define W_MEM 196

Description

This function is used to update inputs or outputs for one scan while the program is

running. This function can be used in conjunction with the Suspend I/O function

(page 3-82), which stops the normal I/O scan. It can also be used to update selected

I/O during the program, in addition to the normal I/O scan.

If input references are specified, the function allows the most recent values of inputs
to be obtained for program logic. If output references are specified, PLCC_do_io

updates outputs based on the most current values stored in I/O memory. I/O points

are serviced in increments of entire I/O modules; the PLC adjusts the references, if
necessary, while the function executes. The PLCC_do_io function will not scan I/O

modules that are not configured.

The PLCC_do_io function is supported for most PACSystems modules. It does not

support Genius I/O modules. The PLCC_do_io function skips modules that do not

support DO_IO scanning. For details, see ―Control Functions‖ in the PACSystems

CPU Reference Manual, GFK-2222.

When this function executes, the input point specified by start_mem_type and

start_mem_offset and the bits included (as specified by length) are scanned. If

alternate_mem_type and alternate_mem_offset is defined, a copy of the data is

placed in alternate memory, and the real input points are not updated. If this function
references output data, data specified in start_mem_type and start_mem_offset

is written to the output modules. If alt locations are defined, the alternate data is

written to the output modules.

Execution of the function continues until either all inputs in the selected range have

reported or all outputs have been serviced on the I/O cards.

GFK-2259E Chapter 3 Writing a C Application 3-81

3

For PLCC_do_io, the Offset and Length for Word types is in units of Words. For Bit

types, the Offset and Length is in units of Bits. Offset and Length is 1-based.

InParam pDoIoRec

A pointer to Do I/O record.

ReturnVal

The function return a 1 unless one or more of the following is true (in which case it

returns a 0):

■ Not all references of the type specified are present within the selected range.

■ The CPU is not able to properly handle the temporary list of I/O created by the

function.

■ The range specified includes I/O modules that are associated with a ―Loss of I/O

Module‖ fault.

Note: If the function is used with timed or I/O interrupts, transitional contacts

associated with scanned inputs may not operate as expected. If an I/O or Alt

reference address, including length, is outside the configured memory limits,

the function will set errno with values described in CPUErrno.h.

PLCC_do_io_ext

Note: Firmware version 3.50 or higher is required for this function.

struct do_io_ext_rec{

 T_WORD start_mem_type;

 T_DWORD start_mem_offset;

 T_DWORD length; /* Ignored if start_mem_type is PLC_VAR_MEM */

 T_WORD alt_mem_type; /* must be set to NULL_SEGSEL if not used */

 T_DWORD alt_mem_offset;

};

/* Valid memory types */

#define I_MEM 16

#define Q_MEM 18

#define R_MEM 8

#define AI_MEM 10

#define AQ_MEM 12

#define W_MEM 196

#define PLCVAR_MEM 262

extern T_INT32 PLCC_do_io_ext(struct do_io_ext_rec *pDoIoExtRec);

Description

This function is an extension of PLCC_do_io. It is used to update inputs or outputs for

one scan while the program is running. This function can be used in conjunction with

the Suspend I/O function (page 3-82), which stops the normal I/O scan. It can also be

used to update selected I/O during the program, in addition to the normal I/O scan.

This function provides PLC variable access along with reference addresses having

32-bit offset as input. To specify a PLC variable as an input to a routine, use the

3-82 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PLC_VAR_MEM memory type and the address of the variable record as the offset.

For details on the use of PLC_VAR_MEM, see page 3-86.

InParam pDoIoRec

A pointer to the Do I/O Extn record.

ReturnVal

 1 if successful

 0 if unsuccessful

-1 if not supported

Errno

Sets Errno if input memory or alt memory is out of range. See cpuErrno.h for possible

values.

PLCC_sus_io

T_INT32 PLCC_sus_io(void);

Description

This function is used to stop normal I/O scans from occurring for one CPU sweep.

During the next output scan, all outputs are held at their current states. During the

next input scan, the input references are not updated with data from inputs. However,

during the input scan portion of the sweep the CPU will verify that Genius Bus

Controllers have completed their previous output updates.

Note: This function suspends all I/O, both analog and discrete, whether rack I/O or

Genius I/O.

ReturnVal

The PLCC_sus_io function returns a 1 if successful, 0 if unsuccessful.

GFK-2259E Chapter 3 Writing a C Application 3-83

3

PLCC_scan_set_io

Note: CPU firmware version 5.00 or higher is required for this function.

struct scan_set_io_rec{

 T_BOOLEAN scan_inputs;

 T_BOOLEAN scan_outputs;

 T_UINT16 scan_set_number;

};

extern T_INT32 PLCC_scan_set_io(struct scan_set_io_rec *pScanSetIoRec);

Description

This function scans the I/O of a specified scan set number. (Modules can be assigned

to scan sets in hardware configuration.) You can specify whether the Inputs and/or

Outputs of the associated scan set will be scanned.

Execution of this function block does not affect the normal scanning process of the

corresponding scan set. If the corresponding scan set is configured for non-default

Number of Sweeps or Output Delay settings, they remain in effect regardless of how

many executions of the Scan Set IO function occur in any given sweep.

The Scan Set IO function skips modules that do not support DO_IO scanning. For

details, see ―Control Functions‖ in the PACSystems CPU Reference Manual,

GFK-2222.

InParam pScanSetIo

A pointer to Scan Set IO record.

ReturnVal

The PLCC_scan_set_io function returns one of the following values:

1 if successful

0 if unsuccessful

-1 if not supported

3-84 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Miscellaneous General Functions

The following miscellaneous functions are described in ctkPlcFunc.h.

PLCC_SNP_ID

T_INT PLCC_SNP_ID (T_BYTE request_type, char id_str_ptr);

/* Valid “request_type” values */#define READ_ID 0

#define WRITE_ID 1

Description

This function will read or write the SNP ID string passed in through id_str_ptr to the

PLC. The string should be an eight character buffer (space for seven letters and a

NULL termination).

InParam request_type

Indicates whether the SNP Id should be read or written.

InParam id_str_ptr

Pointer to character buffer that contains the id to write or receives the current id. This

buffer needs to be allocated by the caller.

ReturnVal

This function returns 1 if successful, 0 if unsuccessful, and -1 if unsupported.

PLCC_read_override

T_INT32 PLCC_read_override (BYTE seg_sel, WORD ref_num, WORD len,

 BYTE *data);

/* Valid “seg_sel” values */

#define I_OVR I_MEM /* this was 0 for the 90-70 C Toolkit */

#define Q_OVR Q_MEM /* this was 1 for the 90-70 C Toolkit */

#define M_OVR M_MEM /* this was 2 for the 90-70 C Toolkit */

#define G_OVR G_MEM /* this was 3 for the 90-70 C Toolkit */

Description

This function reads the override table for the specified type. The read at the offset
must be byte-aligned, that is, ref_num must be set to a value from the following series

1, 9, 17, 33,... The length is in bytes. The area pointed to by data must be large

enough to hold the amount being read.

InParam seg_sel

Indicates the segment selector of the table to get the override values. For example,

use %I segment selector to access the override table associated with %I.

InParam ref_num

Indicates which reference number to start reading from the override table. The

address should be byte aligned for discrete memory (1, 9, 17 etc).

GFK-2259E Chapter 3 Writing a C Application 3-85

3

InParam len

Indicates the number of bytes to read from the override table starting from ref_num

OutParam data

Pointer to memory location to put the requested override data.

ReturnVal

This function returns:

 -0 if successful

 -2 bad_memory_type

 -3 offset_not_byte_aligned

 -4 reading_outside_ref_mem

 -5 bad_data_pointer

3-86 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Reference Memory Functions

The functions in this section are used to access PLC reference memory. These

functions properly take into account transitions and overrides. In addition, they

perform memory range checking. These functions are described in ctkRefMem.h.

When specifying the ―Ref Table‖ input parameter, use the following values:

R_MEM 8

AI_MEM 10

AQ_MEM 12

W_MEM 196

I_MEM 16

Q_MEM 18

T_MEM 20

M_MEM 22

SA_MEM 24

SB_MEM 26

SC_MEM 28

S_MEM 30

AI_DIAG_MEM 40

AQ_DIAG_MEM 42

G_MEM 56

I_BIT 70

I_DIAG_MEM 110

Q_DIAG_MEM 112

I_TRANS_MEM 132

Q_TRANS_MEM 134

T_TRANS_MEM 136

M_TRANS_MEM 138

SA_TRANS_MEM 140

SB_TRANS 142

SC_TRANS_MEM 144

S_TRANS_MEM 146

G_TRANS_MEM 148

RPT_FLT_MEM 188

NULL_SEGSEL 0xff

PLC_VAR_MEM 262

PLC_VAR_MEM

PLC_VAR_MEM is used for PLC variable access. When PLC_VAR_MEM is used, the

offset should be the address of the PLC variable record. This memory type must be

used on a routine that supports a 32-bit offset.

For example:

mask_io_intr_ext_rec.action = MASK;

mask_io_intr_ext_rec.memory_type = PLC_VAR_MEM;

mask_io_intr_ext_rec.memory_offset = &myVarRec;

The variables used must be internally or externally published in the PLC. If they

are not published, store to the PLC will fail.

GFK-2259E Chapter 3 Writing a C Application 3-87

3

WritePlcByte

T_INT32 WritePlcByte(T_WORD RefTable, T_DWORD offset, T_BYTE

writeValue,

 T_BOOLEAN msbByte);

Description

This function writes to reference memory taking into account overrides and transition

bits. A byte of reference memory in the specified Reference Table (RefTable) and at

the specified "offset" is written with the "writeValue".

InParam RefTable

Reference table to write.

InParam offset

Offset within the reference table to write. Note: the offset is 1 based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001.

InParam writeValue

The value to write to the specified reference table and offset.

InParam msbByte

For word references, determines whether the byte is written to the most significant

byte (msbByte = TRUE) or to the least significant byte (msbByte = FALSE).

ReturnVal

If the "RefTable" or "offset" are out of range, no reference memory values are

changed and the function returns GEF_ERROR. If the "offset" is within range, the

function returns GEF_OK.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-88 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

ReadPlcByte

T_BYTE ReadPlcByte (T_WORD RefTable, T_DWORD offset, T_BOOLEAN

msbByte);

Description

A byte of reference memory in the specified Reference Table (RefTable) and at the

specified "offset" is read and returned by the function. Errno is set if there is an error

reading the value.

InParam RefTable

Reference table to read.

InParam offset

Offset within the reference table to read.

Note: The offset is 1 based. For example, RefTable = R_MEM and offset = 1

accesses %R00001

InParam msbByte

For word references, determines whether the byte is read from the most significant

byte (msbByte = TRUE) or to the least significant byte (msbByte = FALSE).

ReturnVal

The value read from the specified reference table at the specified offset.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-89

3

WritePlcWord

T_INT32 WritePlcWord(T_WORD RefTable, T_DWORD offset, T_WORD

writeValue);

Description

This function writes to reference memory taking into account overrides and transition

bits. A word (16 unsigned bits) of reference memory in the specified Reference Table

(RefTable) and at the specified "offset" is written with the "writeValue".

InParam RefTable

Reference table to write.

InParam offset

Offset within the reference table to write. Note: the offset is 1 based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

InParam writeValue

The value to write to the specified reference table and offset

ReturnVal

If the "RefTable" or "offset" are out of range, no reference memory values are

changed and the function returns GEF_ERROR. If the "offset" is within range, the

function returns GEF_OK.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-90 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

ReadPlcWord

T_WORD ReadPlcWord (T_WORD RefTable, T_DWORD offset);

Description

A word (16 unsigned bits) of reference memory in the specified Reference Table

(RefTable) and at the specified offset is read and returned by the function. Errno is set

if there is an error reading the value.

InParam RefTable

Reference table to read.

InParam offset

Offset within the reference table to read. Note: the offset is 1 based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

ReturnVal

The value read from the specified reference table at the specified offset

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

WritePlcInt

T_INT32 WritePlcInt(T_WORD RefTable, T_DWORD offset, T_INT16

writeValue);

Description

This function writes to reference memory taking into account overrides and transition

bits. Reference memory in the specified Reference Table (RefTable) and at the

specified "offset" is written with the "writeValue" as a 16 bit signed integer.

InParam RefTable

Reference table to write.

InParam offset

Offset within the reference table to write. Note: the offset is 1 based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

InParam writeValue

The value to write to the specified reference table and offset

ReturnVal

If the "RefTable" or "offset" are out of range, no reference memory values are

changed and the function returns GEF_ERROR. If the "offset" is within range, the

function returns GEF_OK.

GFK-2259E Chapter 3 Writing a C Application 3-91

3

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

ReadPlcInt

T_INT16 ReadPlcInt (T_WORD RefTable, T_DWORD offset);

Description

Reference memory in the specified Reference Table (RefTable) and at the specified

"offset" is read as a 16 bit signed integer and returned by the function. Errno is set if

there is an error reading the value.

InParam RefTable

Reference table to read.

InParam offset

Offset within the reference table to read. Note: the offset is 1 based.

For example, RefTable = R_MEM and offset = 1 accesses %R00001

ReturnVal

The value read from the specified reference table at the specified offset

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-92 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

WritePlcDint

T_INT32 WritePlcDint (T_WORD RefTable, T_DWORD offset, T_INT32

writeValue);

Description

This function writes to reference memory taking into account overrides and transition

bits. Reference memory in the specified Reference Table (RefTable) and at the

specified "offset" is written with the "writeValue" as a 32 bit signed integer.

InParam RefTable

Reference table to write.

InParam offset

Offset within the reference table to write.

Note: The offset is 1 based. For example, RefTable = R_MEM and offset = 1

 accesses %R00001

InParam writeValue

The value to write to the specified reference table and offset

ReturnVal

If the "RefTable" or "offset" are out of range, no reference memory values are

changed and the function returns GEF_ERROR. If the "offset" is within range, the

function returns GEF_OK.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-93

3

ReadPlcDint

T_INT32 ReadPlcDint (T_WORD RefTable, T_DWORD offset);

Description

Reference memory in the specified Reference Table (RefTable) and at the specified

offset is read as a 32 bit signed integer and returned by the function. Errno is set if

there is an error reading the value.

InParam RefTable

Reference table to read.

InParam offset

Offset within the reference table to read.

Note: The offset is 1 based. For example, RefTable = R_MEM and offset = 1

accesses %R00001

ReturnVal

The value read from the specified reference table at the specified offset.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-94 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

WritePlcDouble

T_INT32 WritePlcDouble (T_WORD RefTable, T_DWORD offset, T_REAL64

writeValue);

Description

This function writes to reference memory taking into account overrides and transition

bits. Reference memory in the specified Reference Table (RefTable) and at the

specified ―offset‖ is written with the ―writeValue‖ as a 64 bit floating point value.

InParam RefTable

Reference table to write.

InParam offset

Offset within the reference table to write.

Note: The offset is 1 based. For example, RefTable= R_MEM and offset = 1

accesses %R00001.

InParam writeValue

The value to write to the specified reference table and offset.

ReturnVal

If the ―RefTable‖ or ―offset‖ are out of range, no reference memory values are

changed and the function returns GEF_ERROR. If the ―offset‖ is within range, the

function returns GEF_OK.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-95

3

ReadPlcDouble

T_REAL64 ReadPlcDouble (T_WORD RefTable, T_WORD offset);

Description

Reference memory in the specified Reference Table (RefTable) and at the specified

offset is read as a 64 bit floating point value and returned by the function. Errno is set

if there is an error reading the value.

InParam RefTable

Reference table to read.

InParam offset

Offset within the reference table to read.

Note: The offset is 1 based. For example, RefTable= R_MEM and offset = 1

accesses %R00001.

ReturnVal

The value read from the specified reference table at the specified offset.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-96 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

PlcMemCopy

T_INT32 PlcMemCopy (void *pDestination, void *pSource, T_DWORD size);

Description

This function copies values from one PLC memory location to another, taking into

account overrides and transition bits if the destination address is in one of the discrete

memory tables. The length of data written is determined by the "size" parameter,

which is in units of bytes (8 bits).

InParam pDestination

Pointer to a PLC memory location to be written.

InParam pSource

Pointer to PLC memory to be copied into pDestination memory.

InParam size

Indicates the number of bytes to copy.

ReturnVal

If one of the pointers to memory is a null pointer, the function returns GEF_ERROR. In

addition, if the source or destination is a reference table and the "size" causes the

copy operation to go outside the boundaries of the specified table, the function also

returns GEF_ERROR. If the write operation is successful, the function returns

GEF_OK.

Errno

If there is an error, this function sets Errno to give more specific information on what

caused the error. Applications that use Errno should first call PLCC_ClearErrno to

ensure Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-97

3

refMemSize

T_DWORD refMemSize(T_WORD RefTable);

Description

This function returns the size of specified reference memory.

InParam RefTable

Reference table segment selector used to indicate which table to find the size.

ReturnVal

Returns the size of reference memory in word units for word type memories and bits

for bit type memories and in bytes for analog diagnostic memory.

If RefTable is invalid or pRefLocalSegSizeTable pointer is null, the function returns 0.

The function can also return 0 if the memory has been configured with a 0 length.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

setBit

T_INT32 setBit(T_WORD RefTable, T_DWORD offset, T_WORD bitNumber);

Description

This function sets the specified bit in reference memory. This function ensures

overrides and transitions are taken into account for bit memory.

InParam RefTable

Reference table segment selector used to indicate which table to access.

InParam offset

Offset to use to clear the bit. This is 1 based. For example use 1 to access %I00001.

InParam bitNumber

For word type memories, this determines which bit to set. For bit type memories, this

input is ignored. This is 1 based with a range of 1 to 16. For example, use 1 to set the

least significant bit in a word memory.

ReturnVal

The function returns GEF_OK if the offset is within range or GEF_ERROR if the offset

is out of range. In the GEF_ERROR case, the specified bit is not changed.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-98 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

clearBit

T_INT32 clearBit(T_WORD RefTable, T_DWORD offset, T_WORD bitNumber);

Description

This function clears the specified bit in reference memory. This function ensures

overrides and transitions are taken into account for bit memory.

InParam RefTable

Reference table segment selector used to indicate which table to access.

InParam offset

Offset to use to clear the bit. This is 1 based. For example use 1 to access %I00001.

InParam bitNumber

For word type memories, this determines which bit to clear. For bit type memories,

this input is ignored. This is 1 based with a range of 1 to 16. For example, use 1 to

clear the least significant bit in a word memory.

ReturnVal

The function returns GEF_OK if the offset is within range or GEF_ERROR if the offset

is out of range. In the GEF_ERROR case, the specified bit is not changed.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

rackX

T_DWORD rackX(T_BYTE rackNumber);

Description

Returns the rack fault summary bit in the rack slot reference record based on the

rackNumber. Only the first bit is significant. This indicates whether one or more

modules in the rack are faulted.

InParam rackNumber

Indicates which rack to get the fault summary bit from. rackNumber is 0 based and the

maximum number of racks is specified in model_specifics.h

ReturnVal

Returns the rack fault summary bit for the requested rack in bit 0.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-99

3

slotX

T_DWORD slotX(T_BYTE rackNumber, T_DWORD slotNumber);

Description

Returns the fault bit for the specified slot and rack in the least significant bit

InParam rackNumber

Indicates which rack to use to get the fault bit. rackNumber is 0 based and the

maximum number of racks is specified in model_specifics.h

InParam slotNumber

Indicates which slot to use to get the fault bit. slotNumber is 0 based and the

maximum number of racks is specified in model_specifics.h

ReturnVal

Returns the fault bit for the requested rack and slot in bit 0.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-100 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

blockX

T_DWORD blockX(T_BYTE rackNumber, T_DWORD slotNumber,

 T_DWORD busNumber, T_DWORD sbaNumber);

Description

Returns the module fault reference bit for a particular block on the bus in the least

significant bit.

InParam rackNumber

Indicates which rack to use to get the module fault reference bit. rackNumber is 0

based and the maximum number of racks is specified in model_specifics.h

InParam slotNumber

Indicates which slot to use to get the module fault reference bit. slotNumber is 0

based and the maximum number of racks is specified in model_specifics.h

InParam busNumber

Indicates which bus to use to get the module fault reference bit. Valid values are 1 or

2.

InParam sbaNumber

Indicates which serial bus offset to use to get the module fault reference bit.

sbaNumber is 0 based and the maximum number of modules per bus is specified in

model_specifics.h

ReturnVal

Returns the module fault reference bit for the requested rack, slot, bus and serial bus

address in bit 0.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-101

3

rsmb

RACK_REFERENCE_REC *rsmb(T_BYTE rackNumber);

typedef struct

{

 T_DWORD RackFlags;/* Summary and failure flags */

 T_DWORD SlotFaults;/* All 32 bits of Dword for slot fault bits*/

 T_DWORD BusRefs[MAX_NUM_BUSES_PER_SLOT]; /* Bus fault bits */

 T_BYTE ModRefs[MAX_NUM_BUSES_PER_SLOT][LIMIT_NUM_SLOTS_PER_RACK]

 [MAX_NUMBER_MODULES_PER_BUS/8];

} RACK_REFERENCE_REC;

/* Definitions and Masks Used with RACK_REFERENCE_REC structure.

 Note: LIMIT_NUM_SLOTS_PER_RACK & MAX_NUMBER_MODULES_PER_BUS

 are defined in model_specifics.h */

#define MAX_NUM_BUSES_PER_SLOT 2

#define REF_RACK_SUMMARY_FLAG 0x01

#define REF_RACK_FAILURE_FLAG 0x02

Description

Returns a pointer to a RACK_REFERENCE_REC structure for the specified rack.

The RACK_REFERENCE_REC provides a structure to determine the location of

faults anywhere in a single rack in the PLC system. The following notes provide

details on how to use the structure when the return value is assigned to a pointer

named pRackRefRec.

Notes:

1. pRackRefRec RackFlags If bit 0 is set, there is at least one module in the rack system with
a fault. If bit 1 is set, the rack has a fault.

2. pRackRefRecSlot Each bit of this 32 bit variable represents 1 of 32 possible slots in
the rack. If a bit is set (1), it indicates the module in the slot
corresponding to the bit number (0—31) has a fault. For example,
if pRackRefRec->Slot equals 0x0000000A, modules in slots 1
and 3 have faults because the 1

st
 and 3

rd
 bits are set.

3. pRackRefRecBusRefs [0]

(for bus 1) or pRackRefRecBusRefs[1]
(for bus 2)

Each bit of this 32 bit variable represents one of two possible
busses on 1 of 32 possible slots in the rack. The bit is set if any
modules on the bus have a fault. For example, if a Genius block
on bus 1 has a fault for a GBC located in slot 3, the value of

pRackRefBusRefs[0], assuming no other faulted modules,
would be 0x000000008.

3-102 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

4. pRackRefRecModRefs[BusNumber][Slo
tNumber][ModuleBytePosition]

This gives an 8 bit variable where each bit represents whether a
module on a bus connected to a rack based module in a slot has
a fault. BusNumber can be a value of 0 or 1 for bus1 or bus2
respectively. SlotNumber can be a value from 0 to 31
representing the slot of the module that supports one of the
busses. ModuleBytePosition is a value from 0 to 31 where each
value represents 8 modules. For example, if ModuleBytePosition
equals 0, it represents fault bits for modules at bus addresses 0
through 7. A value of 1 represents bus addresses 8 to 15, and so
forth.

If a slot-based I/O modules does not have a bus associated with
it, and if the modules has a fault, all BusRefs and ModRefs bits
associated with that slot will be set.

InParam rackNumber

Indicates which rack to use. rackNumber is 0 based and the maximum number of

racks is specified in model_specifics.h

ReturnVal

Returns pointer to a RACK_REFERENCE_REC structure.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-103

3

Utility Function

The following utility function is described in ctkPLCUtil.h.

PLCC_Crc16Checksum

T_WORD PLCC_Crc16Checksum(T_BYTE *pFirstByte, T_DWORD length,

 T_WORD currentCrcValue);

Description

This function calculates a CRC16 checksum over the given area with the given

starting value and length in bytes. The currentCrcValue is normally 0. When checking

a large memory range section by section, you can use the previous section's CRC

value as the initial value.

InParam pFirstByte

Pointer to the first byte to include in the checksum

InParam length

Length of data in units of bytes to calculate the checksum

InParam currentCrcValue

The initial CRC value from the previous CRC calculation when creating CRC over

multiple sections.

ReturnVal

Returns the CRC16 checksum.

Errno

This function sets Errno if pFirstByte is a null pointer. See cpuErrno.h for possible

values.

3-104 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Errno Functions

Some functions provide status by setting a global errno variable. To effectively

examine the value of errno, you should:

1. Call PLCC_ClearErrno to make sure errno was not set by a previous function call.

2. Call the desired function that can potentially set errno.

3. Call PLCCGetErrno to get the current errno value.

Any non-zero errno value indicates an error. The errno definitions are described in

cpuErrno.h. (\Targets\CommonFiles\IncCommon\PlcInc) and Errno.h

(\Targets\CommonFiles\IncCommon\VxCommon).

The PLCC Errno Functions are described in ctkPlcErrno.h.

PLCC_GetErrno

int PLCC_GetErrno(void);

Description

This function returns the errno value in the current context. The errno value is an error

code set by the last PLC Target Library or C Run Time Library function to declare an

error.

ReturnVal

Returns the errno value.

PLCC_ClearErrno

void PLCC_ClearErrno(void);

Description

This function sets the Errno value in the current context to 0.

GFK-2259E Chapter 3 Writing a C Application 3-105

3

PLC Variable Access

The C toolkit can access PLC variables, which are declared on the PLC and can be

managed variables, I/O variables, or mapped variables. This section describes the

macros and external functions (externs) used for accessing PLC variables. These

macros and functions are described in ctkVariables.h

Notes:

■ When reading/writing non-array variables or individual elements of arrays for user

data types, coherency will be guaranteed for the entire read or write.

■ For string variables, the data is not guaranteed to be coherent.

■ When reading/writing non-boolean array variables, coherency will be guaranteed

for each individual element of the array.

■ This feature is supported only on versions 3.50 and later.

Type and Structure Definitions

PLC_VAR

#define PLC_VAR(VariableRecord, PlcVariableName)

PLC_VAR_ENTRY_RECORD(VariableRecord, PlcVariableName)

Description

This macro is used to create a reference to a PLC variable in C logic. These should

be declared as variables global to the C applications. All variables used in C

applications must be internally or externally published in the PLC.

InParam VariableRecord

Name for a reference variable of type PLC_VAR_REC that will be used to reference

the PLC variable when calling routines in this module. This input parameter must be a

valid "C" variable name.

InParam PlcVariableName

Exact name of the PLC variable to be accessed within quotes (for example,

"myPlcVar").

Example 1

For a PLC variable named motorPosition:

 PLC_VAR(motorPositionRec, "motorPosition");

To use this in multiple C files for a single application, place the following extern

statement in a header file:

 extern PLC_VAR_REC motorPositionRec;

3-106 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Example 2:

For a 3 x 5 array of WORDs named algDiagnostics:

 PLC_VAR(algDiagnosticRec, "algDiagnostics");

When calling ReadPlcVar and WritePlcVar with this declaration, the entire 3 x 5 array

is read/written. ReadPlcArrayVarElement and WritePlcArrayVarElement can be used

to access individual elements of the array.

Example 3:

For a 3 x 5 array of WORDs named algDiagnostics where access to a single element

is needed:

 PLC_VAR(algDiagnosticElemRec, "algDiagnostics[2,1]");

When calling ReadPlcVar and WritePlcVar with this declaration, a single word is

read/written. ReadPlcArrayVarElement and WritePlcArrayVarElement called with this

declaration would return an error.

Example 4:

For an array of custom structures named mainValves with a member flowRate:

 PLC_VAR(mainValveFlowRateRec, "mainValves[3,4].flowRate");

Members of structures must be accessed independently. Declaring a PLC_VAR with

only "mainValves" or "mainValves[3,4]" will result in an error when attempting to store

logic.

PLC Var 'C' Types

typedef T_BYTE PLC_VAR_BYTE;

typedef T_WORD PLC_VAR_WORD;

typedef T_INT16 PLC_VAR_INT;

typedef T_UINT16 PLC_VAR_UINT;

typedef T_DWORD PLC_VAR_DWORD;

typedef T_INT32 PLC_VAR_DINT;

typedef float PLC_VAR_REAL;

typedef T_BOOLEAN PLC_VAR_BOOL; /* This should be used for a single

BOOL variable only. PLC_VAR_BYTE

should be used for arrays of BOOLs

because the bits are packed into

bytes. */

GFK-2259E Chapter 3 Writing a C Application 3-107

3

Routines

Proc ReadPlcVar

extern T_INT32 ReadPlcVar(PLC_VAR_REC *pVarInfo, void *pReadTo);

Description

This function reads the value of a PLC variable into a buffer provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the variable to be read.

InParam pReadTo

Pointer to the memory location where the value of the variable to be read should be

located.

Note: If pVarInfo references an array, the entire array will be read.

Notes:

■ For type BOOL, an entire byte will be written to pReadTo with the low bit of the

byte containing the value of the BOOL variable. The remaining seven bits are zero

filled.

■ For an array of type BOOL, the number of bytes written will be (total number of

elements + 7) / 8. The first bit will be written to the least significant bit of the first

byte. The data written will be byte aligned even if the PLC variable is not. Bits that

are not part of the array are zero filled.

■ For type BYTE, an 8-bit value will be written to pReadTo (BYTEs mapped to non-

discrete memories, such as %R or %W, consume 16 bits on the PLC, but will be

packed when written to pReadTo by this routine).

■ For type STRING, the size in bytes of the data written to pReadTo will be the

"max length" in the variables declaration on the PLC.

ReturnVal

GEF_OK if successful.

GEF_ERROR for bad parameter. (Use Errno to determine cause.)

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-108 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc ReadPlcArrayVarElement

extern T_INT32 ReadPlcArrayVarElement(PLC_VAR_REC *pVarInfo,

 void *pReadTo,

 T_INT32 numIndices,

 ...);

Description

This function reads the value of a single element in a PLC array variable into a buffer

provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the array containing the element to

be read.

InParam pReadTo

Pointer to the memory location where the value of the variable to be read is located.

Notes:

■ For type BOOL, an entire byte will be written to pReadTo with the low bit of the

byte containing the value of the BOOL variable.

■ For type BYTE, an 8-bit value will be written to pReadTo regardless of whether

the array is in discrete or non-discrete memory on the PLC (BYTEs mapped to

non-discrete memories, such as %R or %W, consume 16 bits on the PLC).

■ For type STRING, the size in bytes of the data written to pReadTo will be the

"max length" in the variables declaration on the PLC.

InParam numIndices

Number of indices needed to locate an element of the array. This must be greater

than zero and must match the number of dimensions of the variable declared on the

PLC.

InParam <indices>

A variable number of indices (must match numIndices) indicating the element of the

array to be read. These should be T_INT32 type.

ReturnVal

GEF_OK if successful.

GEF_ERROR for bad parameter. (Use Errno to determine cause.)

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are provided in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-109

3

Proc ReadPlcVarDiag

extern T_INT32 ReadPlcVarDiag(PLC_VAR_REC *pVarInfo, void

*pReadDiagsTo);

Description

This function reads the diagnostic value(s) for a PLC variable into a buffer provided by

the caller. If the variable does not have diagnostics, an error will be returned.

Variables of type STRING are invalid and will return an error.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the variable to be read.

InParam pReadDiagsTo

Pointer to the memory location where the diagnostic values of the variable should be

written.

Notes:

■ If pVarInfo references an array, the diagnostics for the entire array will be read.

■ For type BOOL, an entire byte will be written to pReadDiagsTo with the low bit of

the byte containing the diagnostic value of the BOOL variable.

■ For an array of type BOOL, the number of bytes written will be (total number of

elements + 7) / 8. The first diagnostic bit will be written to the least significant byte

of the first byte.

■ For type BYTE and BYTE arrays, there will be one byte of diagnostic written for

every byte element.

■ For all other types, the number of bytes written will be the byte size of the PLC

variable divided by 2 if the variable is in non-discrete memory. For example, an

array of 8 words would have 8 bytes of diagnostic data. If the variable is discrete

memory, the number of bytes written will be equal to the size of the array variable

in bytes.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are provided in ctkPlcErrno.h.

Bit Masks to be Used with Diagnostics

These bit masks are defined in ctkRefMem.h.

For access to analog input diagnostic memory:

HI_ALARM_MSK 0x02

LO_ALARM_MSK 0x01

AI_OVERRANGE_MSK 0x08

AI_UNDERRANGE_MSK 0x04

For access to analog output diagnostic memory:

AQ_OVERRANGE_MSK 0x40

AQ_UNDERRANGE_MSK 0x20

3-110 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc ReadPlcArrayVarElementDiag

extern T_INT32 ReadPlcArrayVarElementDiag(PLC_VAR_REC *pVarInfo,

 void *pReadDiagsTo,

 T_INT32 numIndices,

 ...);

Description

This function reads the diagnostic values for a single element in a PLC array variable

into a buffer provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the array containing the element

whose diagnostics are to be read. If the variable does not have diagnostics, an error

will be returned. Arrays of STRINGs are invalid and will return an error.

InParam pReadDiagsTo

Pointer to the memory location where the diagnostic values are to be written.

Notes:

■ For type BOOL, an entire byte will be written to pReadDiagsTo with the low bit of

the byte containing the diagnostic value of the BOOL variable.

■ For type BYTE, 8 bits of diagnostics will be written to pReadTo regardless of

whether the array is in discrete or non-discrete memory on the PLC.

■ For all other types, if the variable is in non-discrete memory, the number of bytes

written will be the byte size of the array element divided by 2.

■ For example, an element from an array of words would be 1 byte of diagnostic

data. If the variable is discrete memory, the number of bytes written will be equal

to the size of an array element in bytes.

InParam numIndices

Number of indices needed to locate an element of the array. This must be greater

than zero and must match the number of dimensions of the variable declared on the

PLC.

InParam <indices>

A variable number of indices (must match numIndices) that indicates the element of

the array for which diagnostics is to be read. These should be T_INT32 type.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are provided in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-111

3

Bit Masks to be Used with Diagnostics

These bit masks are defined in ctkRefMem.h.

For access to analog input diagnostic memory:

HI_ALARM_MSK 0x02

LO_ALARM_MSK 0x01

AI_OVERRANGE_MSK 0x08

AI_UNDERRANGE_MSK 0x04

For access to analog output diagnostic memory:

AQ_OVERRANGE_MSK 0x40

AQ_UNDERRANGE_MSK 0x20

Proc ReadPlcVarOvr

extern T_INT32 ReadPlcVarOvr(PLC_VAR_REC *pVarInfo, void *pReadOvrTo);

Description

This function reads the override value(s) for a PLC variable into a buffer provided by

the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the variable to be read. If the

variable does not have overrides, an error will be returned.

InParam pReadOvrTo

Pointer to the memory location where the override values for the variable should be

written.

Note: If pVarInfo references an array, the overrides for the entire array will be read.

Notes:

■ For type BOOL, an entire byte will be written to pReadOvrTo with the low bit of the

byte containing the override value for the BOOL variable.

■ For an array of type BOOL, the number of bytes written will be (total number of

elements + 7) / 8. The first override bit will be written to the least significant byte of

the first byte.

■ For all other types, the number of bytes written will be equal to the byte size of the

PLC variable.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are provided in ctkPlcErrno.h.

3-112 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc ReadPlcArrayVarElementOvr

extern T_INT32 ReadPlcArrayVarElementOvr(PLC_VAR_REC *pVarInfo,

 void *pReadOvrTo,

 T_INT32 numIndices,

 ...);

Description

This function reads the override value(s) for a single element in a PLC array variable

into a buffer provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the array containing the element

whose diagnostics are to be read. If the variable does not have overrides, an error will

be returned.

InParam pReadOvrTo

Pointer to the memory location where the override values are to be written.

Notes:

■ For type BOOL, an entire byte will be written to pReadOvrTo with the low bit of the

byte containing the override value for the BOOL variable.

■ For all other types, the number of bytes written will be equal to the byte size of an

element in the PLC array variable.

InParam numIndices

Number of indices needed to locate an element of the array. This must be greater

than zero and must match the number of dimensions of the variable declared on the

PLC.

InParam <indices>

A variable number of indices (must match numIndices) indicating the element of the

array for which diagnostics are to be read. These should be T_INT32 type.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are provided in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-113

3

Proc ReadPlcVarTrans

extern T_INT32 ReadPlcVarTrans(PLC_VAR_REC *pVarInfo, void

*pReadTransTo);

Description

This function reads the transition value(s) for a PLC variable into a buffer provided by

the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the variable to be read. If the

variable does not have transitions, an error will be returned.

InParam pReadTransTo

Pointer to the memory location where the transition values for the variable should be

written.

Note: If pVarInfo references an array, the transitions for the entire array will be read.

Notes:

■ For type BOOL, an entire byte will be written to pReadTransTo with the low bit of

the byte containing the transition value for the BOOL variable.

■ For an array of type BOOL, the number of bytes written will be (total number of

elements + 7) / 8. The first transition bit will be written to the least significant byte

of the first byte.

■ For all other types, the number of bytes written will be equal to the byte size of the

PLC variable.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

3-114 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc ReadPlcArrayVarElementTrans

extern T_INT32 ReadPlcArrayVarElementTrans(PLC_VAR_REC *pVarInfo,

 void *pReadTransTo,

 T_INT32 numIndices,

 ...);

Description

This function reads the transition value(s) for a single element in a PLC array variable

into a buffer provided by the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the array containing the element

whose diagnostics are to be read. If the variable does not have transitions, an error

will be returned.

InParam pReadTransTo

Pointer to the memory location where the transition values are to be written.

Notes:

■ For type BOOL, an entire byte will be written to pReadTransTo with the low bit of

the byte containing the transition value for the BOOL variable.

■ For all other types, the number of bytes written will be equal to the byte size of an

element in the PLC array variable.

InParam numIndices

Number of indices needed to locate an element of the array. This must be greater

than zero and must match the number of dimensions of the variable declared on the

PLC.

InParam <indices>

A variable number of indices (must match numIndices) indicating the element of the

array for which diagnostics are to be read. These should be T_INT32 type.

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are provided in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-115

3

Proc WritePlcVar

extern T_INT32 WritePlcVar(PLC_VAR_REC *pVarInfo, void *pWriteFrom);

Description

This function writes a value to a PLC variable from the buffer provided by the caller.

This routine accounts for overrides and transitions when applicable.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the variable to be written.

InParam pWriteFrom

Pointer to the memory location of the value(s) to be written to the PLC variable.

Note: If pVarInfo references an array, the entire array will be written.

Notes:

■ For type BOOL, the least significant bit at the byte pointed to by pWriteFrom will

be written to the PLC variable.

■ For an array of type BOOL, the bits will be copied starting at the least significant

bit of the byte pointed to by pWriteFrom.

■ For type BYTE, an 8 bit value will be read from pWriteFrom (For non-discrete

memories where the BYTE variable consumes 16 bits on the PLC the 8 bit value

will be written to the least significant 8 bits of the 16 bit word).

■ For type STRING, the size of the data copied from pWriteFrom will be the "max

length" in the variables declaration.

ReturnVal

GEF_OK if successful.

GEF_ERROR for bad parameter. (Use Errno to determine cause.)

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are provided in ctkPlcErrno.h.

3-116 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc WritePlcArrayVarElement

extern T_INT32 WritePlcArrayVarElement(PLC_VAR_REC *pVarInfo,

 void *pWriteFrom,

 T_INT32 numIndices,

 ...);

Description

This function writes a single element in a PLC array variable from a buffer provided by

the caller.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record for the array containing the element to

be written.

InParam pWriteFrom

Pointer to the memory location containing the value to be written to the array element.

Notes:

■ For type BOOL, the least significant bit at the byte pointed to by pWriteFrom will

be written to the PLC variable array element.

■ For type BYTE, an 8 bit value will be read from pWriteFrom (For non-discrete

memories where the BYTE variable consumes 16 bits on the PLC the 8 bit value

will be written to the least significant 8 bits of the 16 bit word).

■ For type STRING, the size of the data copied from pWriteFrom will be the "max

length" in the variables declaration.

InParam numIndices

Number of indices needed to locate an element of the array. This must be greater

than zero and must match the number of dimensions of the variable declared on the

PLC.

InParam <indices>

A variable number of indices (must match numIndices) indicating the element of the

array to be written. These should be T_INT32 type.

ReturnVal

GEF_OK if successful.

GEF_ERROR for bad parameter. (Use Errno to determine cause.)

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are located in ctkPlcErrno.h.

GFK-2259E Chapter 3 Writing a C Application 3-117

3

Proc PlcVarMemCopy

extern T_INT32 PlcVarMemCopy(PLC_VAR_REC *pDestVarInfo,

 PLC_VAR_REC *pSrcVarInfo);

Description

This function copies the contents of one PLC variable to another PLC variable of the

same type and size. The size of the destination variable must be greater than or equal

to the size of the source variable. No other type or bounds checking will be done.

InParam pDestVarInfo

Pointer to a PLC_VAR_REC information record for the destination variable.

InParam pSrcVarInfo

Pointer to a PLC_VAR_REC information record for the destination variable.

ReturnVal

GEF_OK if successful.

GEF_ERROR for bad parameter. (Use Errno to determine cause.)

Errno

If there is an error, this function sets Errno to give specific information on what caused

the error. Applications that use Errno should first call PLCC_ClearErrno to ensure

Errno was not already set by another function call. Errno can be read using

PLCC_GetErrno. Errno values are provided in ctkPlcErrno.h.

3-118 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc PlcVarType

typedef enum

{

 PLC_BOOL_VAR_TYPE = 0,

 PLC_BYTE_VAR_TYPE = 13,

 PLC_WORD_VAR_TYPE = 14,

 PLC_INT_VAR_TYPE = 25,

 PLC_UINT_VAR_TYPE = 26,

 PLC_DWORD_VAR_TYPE = 18,

 PLC_DINT_VAR_TYPE = 1,

 PLC_REAL_VAR_TYPE = 27,

 PLC_STRING_VAR_TYPE = 24,

 PLC_INVALID_VAR_TYPE = 0xFFFFFFFF

} PLC_VAR_TYPES;

extern T_DWORD PlcVarType(PLC_VAR_REC *pVarInfo);

Description

This function returns the type value for a PLC variable.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal varType

Value defining the type of the PLC variable. Returns PLC_INVALID_VAR_TYPE if

input is NULL.

Proc PlcVarSizeof

extern T_DWORD PlcVarSizeof(PLC_VAR_REC *pVarInfo);

Description

This function returns the total size of a PLC variable. If the variable is a BOOL or array

of BOOLS, the size is in bits. For all other types, the size is in bytes.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal size

Size in bits for BOOLs/Arrays of BOOLs. Size in bytes for all other types. Zero is

returned for NULL input pointer.

Note: BYTE arrays in non-discrete memory are not packed on the PLC, so each

byte occupies 16 bits of PLC memory. This routine will return the size in bytes

as if the byte array were packed, not the size of the memory occupied on the

PLC.

GFK-2259E Chapter 3 Writing a C Application 3-119

3

Proc PlcVarSizeofDiag

extern T_DWORD PlcVarSizeofDiag(PLC_VAR_REC *pVarInfo);

Description

This function returns the total size of the diagnostic memory for a PLC variable. If the

variable is a BOOL or array of BOOLS, the size is in bits. For all other types, the size

is in bytes.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal size

Size in bits for BOOLs/Arrays of BOOLs. Size in bytes for all other types. Zero is

returned for NULL input pointer.

Note: BYTE arrays in non-discrete memory are not packed on the PLC, therefore

each byte occupies 16 bits of PLC memory. This routine will return the size in

bytes as if the byte array were packed, not the size of the memory occupied

on the PLC.

Proc PlcVarSizeofOvr

extern T_DWORD PlcVarSizeofOvr(PLC_VAR_REC *pVarInfo);

Description

This function returns the total size of the override memory for a PLC variable. If the

variable is a BOOL or array of BOOLS, the size is in bits. For all other types, the size

is in bytes.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal size

Size in bits for BOOLs/Arrays of BOOLs. Size in bytes for all other types. Zero is

returned for NULL input pointer.

Note: BYTE arrays in non-discrete memory are not packed on the PLC, so each

byte occupies 16 bits of PLC memory. This routine returns the size in bytes as

if the byte array were packed, not the size of the memory occupied on the

PLC.

3-120 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc PlcVarSizeofTrans

extern T_DWORD PlcVarSizeofTrans(PLC_VAR_REC *pVarInfo);

Description

This function returns the total size of the transition memory for a PLC variable. If the

variable is a BOOL or array of BOOLS, the size is in bits. For all other types, the size

is in bytes.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal size

This function returns size in:

Bits for BOOLs/Arrays of BOOLs

Bytes for all other types.

Zero is returned for NULL input pointer.

Note: BYTE arrays in non-discrete memory are not packed on the PLC, so each

byte occupies 16 bits of PLC memory. This routine will return the size in bytes

as if the byte array were packed, not the size of the memory occupied on the

PLC.

Proc PlcVarNumDimensions

extern T_DWORD PlcVarNumDimensions(PLC_VAR_REC *pVarInfo);

Description

This function returns the number of dimensions for a PLC variable. If the variable is

not an array, zero is returned.

Note: A variable of type STRING will return zero. An array of STRINGs will return

non-zero.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal numDimensions

Number of dimensions for array variables, zero for scalar types.

GFK-2259E Chapter 3 Writing a C Application 3-121

3

Proc PlcVarHasDiags

extern T_BOOLEAN PlcVarHasDiags(PLC_VAR_REC *pVarInfo);

Description

This function returns TRUE if the PLC variable supports diagnostics, FALSE if not.

Note: This routine returns TRUE if the variable supports diagnostics regardless of

 the state of the diagnostic data.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal

TRUE if the PLC variable has diagnostic values associated with it, FALSE if not.

Proc PlcVarHasOverrides

extern T_BOOLEAN PlcVarHasOverrides(PLC_VAR_REC *pVarInfo);

Description

This function returns TRUE if the PLC variable supports overrides, FALSE if not.

Note: This routine returns TRUE if the variable supports overrides regardless of the

state of the overrides.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal

TRUE if the PLC variable has override values associated with it, FALSE if not.

Proc PlcVarHasTransitions

extern T_BOOLEAN PlcVarHasTransitions(PLC_VAR_REC *pVarInfo);

Description

This function returns TRUE if the PLC variable supports transitions, FALSE if not.

Note: This routine returns TRUE if the variable supports transitions regardless of the

state of the transitions.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal

TRUE if the PLC variable has transition values associated with it, FALSE if not.

3-122 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Proc PlcVarArrayElementSize

extern T_DWORD PlcVarArrayElementSize(PLC_VAR_REC *pVarInfo);

Description

This function returns the size in bytes of an individual element of an array variable. If

the variable is a BOOL, an array of BOOLs, or not an array, zero will be returned.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

ReturnVal

Size in bytes of an individual array element.

Proc PlcVarArrayBound

extern T_DWORD PlcVarArrayBound(PLC_VAR_REC *pVarInfo, T_DWORD

dimension);

Description

This function returns the upper boundary for a given array dimension. For example, if

the variable is a 3 by 5 array, requesting dimension 1 would return 3 and requesting

dimension 2 would return 5. If the variable is not an array or the variable does not

have as many dimensions as indicated by the "dimension" input parameter, zero is

returned.

InParam pVarInfo

Pointer to a PLC_VAR_REC information record.

InParam dimension

Indicates the array dimension to return the bound for.

ReturnVal

Boundary of the requested array dimension.

GFK-2259E Chapter 3 Writing a C Application 3-123

3

Application Considerations
When creating a C application, it is necessary to keep in mind a few items regarding

the target PACSystems:

1. How big is each of the target PLC’s reference memories?

2. Will the block be called from the MAIN ladder block or from some other ladder

block?

3. How large is the C application likely to be?

All of these questions must be kept in mind while developing C applications. The

following sections provide detail on each of these questions and other questions

regarding the creation of C applications.

Application File Names

Application file names are limited to 31 characters. The first character in the filename

must be alphabetic.

Floating Point Arithmetic

All PACSystems CPUs support floating point math.

Available Reference Data Ranges

When a C application uses an index variable to select an element from PLC reference

memory via a reference memory macro, the value of the index variable should always

be checked against the size of the target PLC's reference memory. It is also a good

practice to check the size before calling reference memory functions but is not

absolutely necessary because the function will return an error status or set Errno if the

index variable is out of range for the selected memory. The size of any PLC reference

memory can be determined using the corresponding SIZE macro. As an example,

consider the following ladder logic rung and sample block, where the value in %P1 is

to be used as an index into %R memory and the value at %R[%P1] is to be copied to

%P2:

3-124 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Range Checking Indirect References Using the SIZE Macros

/* The value at x1 will be used as an index into */

/* register memory. The value at %R(x1) will be */

/* copied to y1. */

int GefMain(T_WORD *x1, T_INT16 *y1)

{

 /* FIRST - check X1 & Y1 != NULL */

 /* SECOND - must range check value at x1 to ensure */

 /* that we will stay within limits of PLC */

 /* %R reference memory. */

 if ((x1 != NULL) && y1 != NULL)) {

 if (*x1 > R_SIZE) return(ERROR);

 /* Range check proved OK ==> go ahead and copy data */

 *y1 = RW(*x1);

 return(GEF_EXECUTION_OK);

 }

 else return (GEF_EXECUTION_ERROR);

}

In the above example, the index *x1 is compared to R_SIZE. If the target PLC

contains 1024 registers, then R_SIZE will evaluate to 1024. If *x1 is greater than 1024

(R_SIZE), the program will return with the status GEF_EXECUTION_ERROR which

indicates that the ENO output of the CALL function block should be turned OFF. With

*x1 greater than R_SIZE, the C block will return with GEF_EXECUTION_ERROR

status and no attempt is made to index into register memory nor to copy any register

memory value to *y1.

Global Variable Initialization

Global variables can be used by C applications running in a PACSystems control

system. Global variables are those which are declared outside of a function, typically

outside of and before GefMain(). Both initialized and uninitialized global variables

may be used.

T_INT32 xyz; /* uninitialized global var */

T_INT32 abc = 123; /* initialized global var */

int GefMain() {

 xyz = RW(1);

 RI(2) = ++abc;

 return(GEF_EXECUTION_OK);

}

When a C application is compiled and linked to form relocate-able (.gefElf) file, all

global variables have a relative location within the .gefElf image. If the global

variable is declared in the C source to have an initial value, the location in the
.gefElf image for that global variable will contain the initialized value. When a C

application is incorporated into a Machine Edition folder and that folder is stored to a
PACSystems CPU, the CPU stores an image of the .gefElf file into user memory

with space pre-allocated for all global variables and with all initialized global variables

GFK-2259E Chapter 3 Writing a C Application 3-125

3

already containing their predefined values. Upon storing the .gefElf image, the PLC

will make a copy of the data portion (data portion = initialized global variables).

Once the PLC is placed into RUN mode, the C application may operate upon any of its

global variables. Each of the C application’s global variables will retain its value from
one sweep to the next sweep and will continue to do so until the PLC goes to STOP

mode. On the transition from STOP mode to RUN mode, the PLC will re-initialize all of

the C application’s initialized global data to those values in the saved copy of global

data start values. (Recall that the start values were saved when the folder was stored

to the PLC.)

Static Variables

The keyword ―static‖ may be used with either global variables or variables declared
inside a function (including GefMain()). These variables will retain their value from

sweep to sweep like global data. If a static variable is declared with an initial value,

the variable will be initialized on the first execution from store or on transition from
STOP to RUN mode. If a static variable is declared without an initial value, the initial

value is undefined and must be initialized by the C application.

Note: If C blocks are used multiple times in a ladder, static or global variables may

not contain expected data from sweep to sweep. Multiple use blocks must at

least receive a unique ID for each call or a unique work area to properly

distinguish multiple calls.

Data Retentiveness

All global variables and static variables are either retentive or non-retentive. Values of

retentive data are preserved across both power-cycles (assuming a good battery is

attached) and stop-to-run transitions. Non-retentive data is reinitialized on each stop-

to-run transitions using values saved when the application was first stored.

All global and static variables, which are given an initial value, will be non-retentive. In

general, uninitialized global data will be retentive. Since non-retentive data requires

twice the memory space within the CPU (one for the working copy, and one for the

saved copy), large initialized data structures should be avoided if memory usage is a

concern.

The following examples illustrate retentive and non-retentive variables.

Examples:

T_INT16 my_var1; /* retentive */

T_INT16 my_var2 = 20; /* non-retentive reset to 20 on stop-

to-run

 transitions */

static T_INT16 my_var3; /* retentive */

static T_INT16 my_var4 = 12; /* non-retentive, reset to 12 on stop-

to-run

 transitions */

3-126 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

GefMain() Parameter Declaration Errors for Blocks

When declaring the parameters to G e f M a i n () in a block, the type, order, and

number of parameters must match the ladder logic call instruction exactly. Use the

following ladder logic segment and associated C block as an example:

/* This rung of ladder logic calls MATH2 to */

/* add the two integers X1 and X2 and place the sum in Y1 */

/* and subtract the integer X2 from the integer X1, placing */

/* the difference in Y2. */

Figure 3-6. Importance of Matching Parameter Type, Order, and Number

/* MATH2 :

 * This function has two input parameters and two output

 * parameters.

 * Y1 = X1 + X2;

 * Y2 = X1 - X2;

 */

int GefMain(T_INT16 *x1, T_INT16 *x2, T_INT16 *y1, T_INT16 *y2) {

 if (((x1 != NULL) && (y1 != NULL)) &&

 ((x2 != NULL) && (y2 != NULL))) {

 *y1 = *x1 + *x2;

 *y2 = *x1 - *x2;

 return(GEF_EXECUTION_OK);

 }

 else return (GEF_EXECUTION_ERROR);

}

As written above, the example is correct; the ladder logic call and the block

declaration match. The operation of the ladder logic and the block will execute

properly.

GFK-2259E Chapter 3 Writing a C Application 3-127

3

Type Mismatch Errors

If, however, the block declaration is changed to the following, execution errors will

occur.

int GefMain(T_REAL32 *x1, T_REAL32 *x2, T_REAL32 *y1, T_REAL32 *y2) {

 if (((x1 != NULL) && (y1 != NULL)) &&

 ((x2 != NULL) && (y2 != NULL))) {

 *y1 = *x1 + *x2;

 *y2 = *x1 - *x2;

 return(GEF_EXECUTION_OK);

 }

 else return (GEF_EXECUTION_(ERROR);

}

The block will compile and link without error. The .gefElf file will be added and

imported to the application folder without error. Similarly, the folder will store to the

PACSystems CPU without error. No error will appear until the ladder and block are

executed. The ladder logic will call MATH2 passing pointers to two (2) input

parameters and pointers to two (2) output parameters. MATH2 expects two (2) input

parameter pointers and two (2) output parameter pointers. The error occurs because

the ladder logic uses integer variables (16 bits each), but the block uses float

variables (32 bits each). This results in the block using the pointer x1 to read a 32 bit

floating point value which starts at %R1 (the value used in the ladder logic). The 32 bit

floating point value starting at %R1 includes both %R1 and %R2, but %R2 is the

reference specified in ladder logic as x2. Since the input variables overlap,

unpredictable values will result from the execution of this block. Notice also that the

output parameters will have a similar problem.

Parameter Ordering Errors

Execution errors can also occur due to differences in the order of the parameters

when calling a block and the order of the parameters in the block declaration of
GefMain(). Continuing with the same example, if the ladder logic is unchanged but

GefMain() is declared as follows, an execution error will occur.

int GefMain (T_INT16 *x1, T_INT16 *y1, T_INT16* x2, T_INT16* y2) {

 ...

}

No error message will be generated, just unpredictable output values. The execution

error occurs because ladder logic always passes all of the specified input parameters

in top-to-bottom order, followed by all of the specified output parameters, also in top-

to-bottom order. In this case, the ladder logic passes %R1, %R2, %P1, and %P2, the

two input parameters followed by the two output parameters. The block associates the

parameters from the ladder logic call with its own variable names, as in the following

example:

T_INT16 *x1 refers to %R1

T_INT16 *y1 refers to %R2

T_INT16 *x2 refers to %P1

T_INT16 *y2 refers to %P2

3-128 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

When the block executes the statement:

*y1 = *x1 + *x2;

the resulting operation adds the contents of %R1 (*x1) to the contents of %P1 (*x2)

and place the sum in %R2 (*y1), which is not what the ladder logic program expects.

Since the ladder logic call to a block always specifies the parameters in order (inputs
1 to 63) and (outputs 1 to 63), the block declaration of GefMain() must specify the

parameters to GefMain() in the same order.

Parameter Number Errors

If the number of parameters associated with a block in ladder logic does not match the
number of parameters in the declaration of GefMain() for the block, potentially

severe execution errors will occur.

Note: It is essential that the number of parameters in a call to a block and the actual

number of parameters required by the called block match; otherwise, the

block will use invalid pointer variables to perform reads and writes.

Again, using our example with the ladder logic portion unchanged, the effect of a

difference in the number of parameters can be illustrated in the following example:

int GefMain (T_INT16 *x1, T_INT16 *y1) {

/* Add the contents of %R1 to the contents pointed to by x1 */

/* and then store the sum in the location pointed to by y1 */

 if ((x1 != NULL) && (y1 != NULL)) {

 *y1 = *x1 + RI(1);

 return(GEF_EXECUTION_OK);

 }

 else return (GEF_EXECUTION_ERROR);

}

In this scenario, the ladder logic call will pass four parameters, %R1, %R2, %P1, and

%P2. The block expects two parameters, x1 and y1, which it will associate with the

passed in parameters as follows:

T_INT16 *x1 refers to %R1

T_INT16 *y1 refers to %R2

%P1 and %P2 are not referenced

The operation of this block with regard to parameter x1 is flawless. However, when y1

is used as the pointer for storing the sum, the sum will be written to %R2, not to %P1.

This will cause incorrect operation of the application.

GFK-2259E Chapter 3 Writing a C Application 3-129

3

A more severe scenario is a block declared as follows:

int GefMain (T_INT16 *x1, T_INT16 *x2, T_INT16 *x3, T_INT16 *y1,

T_INT16 *y2, T_INT16*y3) {

/* Add the contents of %Rn to the contents pointed to by xn */

/* and then store the sum in the location pointed to by yn */

 *y1 = *x1 + RI(1);

 *y2 = *x2 + RI(2);

 *y3 = *x3 + RI(3);

 return(GEF_EXECUTION_OK);

}

The above block can have catastrophic results if executed in conjunction with the

example ladder logic rung. Again, the ladder logic call is passing four parameters, a

pointer to %R1, a pointer to %R2, a pointer to %P1, and a pointer to %P2. The C

program expects six parameters, all pointers. The block will then associate each of

the declared parameters to GefMain() with the pointers passed from the ladder logic

call as follows:

T_INT16 *x1 refers to %R1 /* OK */

T_INT16 *x2 refers to %R2 /* OK */

T_INT16 *x3 refers to %P1 /* error - wrong parameter */

T_INT16 *y1 refers to %P2 /* error - wrong parameter */

T_INT16 *y2 refers to an unknown value on the PLC stack

T_INT16 *y3 refers to an unknown value on the PLC stack

The unknown values on the PLC stack will be used for y2 and y3 and will cause the C

program to write erroneously into PLC memory or cause a page fault. The exact

location of the write is unpredictable.

Note: Always verify that the number of parameters expected by a block and the

number the ladder logic call will pass to that block are the same. Always verify

that the parameters are not NULL pointers before using.

3-130 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Uninitialized Pointers

Use of an uninitialized C pointer variable in your C application can cause catastrophic

effects on the PLC. It is essential that all pointer variables be correctly initialized prior

to use by a C application.

 BAD PROGRAM - Uninitialized Pointer

int GefMain() {

 T_BYTE *bad_ptr;

 T_INT16 loop;

 /* Attempt to initialize data area through */

 /* uninitialized pointer. */

 for (loop = 0; loop < 10; loop++) {

 *bad_ptr = 0;

 }

 return(GEF_EXECUTION_OK);

}

Warning

All pointer variables in a C application, including those used by
library functions, must be initialized before they are used, or
unpredictable results will occur. The use of an uninitialized
pointer may result in the PACSystems logging a fatal fault in the
controller fault table and going to STOP/HALT mode.

Uninitialized pointers may also result from a C block user not
setting all required parameters. Check parameter pointers for
NULL before using.

GFK-2259E Chapter 3 Writing a C Application 3-131

3

PLC Local Registers (%P and %L)

C Blocks have access to %P and %L PLC reference memory through several macros
or functions provided in the file PACRxPlc.h in the C Toolkit. When referencing %P

and %L from a block, the following two reference memories appear as two separate

tables:

int GefMain() { /* no parameters to GefMain */

 PW(1) = RW(1); /* Copy %R1 to %P1 */

 LW(1) = RW(2); /* Copy %R2 to %L1 */

 return(GEF_EXECUTION_OK);

}

The PLC memory location used as %L or %P is determined by the PACSystems at

runtime, based on the context from which the block was called. If the block is called
from the MAIN ladder logic block, then all %L references inside the block will reference

the %P table. The %P table and the %L table are the same when a block is called

from the main block

If, however, the same block is called from a ladder logic program block other than
MAIN, the %P and %L tables will be separate and unique in PLC memory. When the

%P and %L tables are separate, all references to %L will affect only the calling block’s

%L table, and all references to %P will affect only the main program block’s %P table.

When called from the MAIN ladder logic block, the following block will set %P1 equal to

%R1 and then set %L1 equal to %R2:

GefMain() { /* no parameters to GefMain */

 PW(1) = RW(1); /* Copy %R1 to %P1 */

 LW(1) = RW(2); /* Copy %R2 to %L1 */

 return(GEF_EXECUTION_OK);

}

Since %L1 is actually %P1 in this case, this results in %P1 being set to the value

contained in %R2. Again, this is because %P and %L, when used in a block, refer to
the same memory table when called from the MAIN ladder logic block. Conversely,

when this same block is called from any ladder sub-block, the result will be that %P1

equals %R1 and that %L1 equals %R2.

Note: Refer to ―Blocks as Timed or I/O Interrupt Blocks,‖ for an explanation of %P

and %L in interrupt blocks.

3-132 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

%P and %L in Ladder Logic

The references %P and %L refer to two of the PLC’s internal memory tables. Each of

these types is word-oriented.

Descriptions of %P and %L

Type Description

%P The prefix %P is used to assign program register references, which will store program
data from the main program block. This data can be accessed from all program blocks.
The size of the %P data block is based on the highest %P reference in all ladder logic
program blocks.

%L The prefix %L is used to assign local register references, which will store data unique
to a ladder logic program block. The size of the %L data block is based upon the
highest %L reference in the associated ladder logic program block.

Both %P and %L user references have a scope associated with them. Each of these

references may be available throughout the logic program, or access to these

references may be limited to a single ladder logic program block.

Data Scope of %P and %L

User Reference Range Scope

%P Program Accessible from any program block.

%L Local Accessible from within a ladder logic block. Also accessible
from any external block called by the ladder logic block.

In a program block, %P should be used for program references which will be shared

with other program blocks. %L are local references which can be used to restrict the

use of register data to that ladder logic program block and any C block called by that

ladder logic block. These references are not available to any other parts of the

program.

Block Enable Output (ENO)

In ladder logic, the function block CALL, when used with a block as the target,

provides a boolean ENO output. This ENO output from the call is under the direct

control of the block.

The ENO output is controlled by the return value from GefMain(). If GefMain()

returns a value of GEF_EXECUTION_OK, the ENO output is turned ON (1). If,
however, GefMain() returns a value of GEF_EXECUTION_ERROR, the CALL

function block ENO output is turned OFF (0). (The C symbols GEF_EXECUTION_OK
and GEF_EXECUTION_ERROR are defined in the toolkit file PACRxPlc.h.)

Writes to %S Memory Using SB(x)

The %S table is for the PLC to provide status on its operation. This table is intended

to be written only by the CPU firmware; therefore, it is also intended to be read-only

from elsewhere in the system, specifically from the application program. Attempting to

use the SB(x) macro to write into %S memory will result in a compile error when

compiling the application C source file. Similarly, attempting to use the pointer variable
sb_mem (provided in PACRxPlc.h and the same pointer variable used by the SB(x)

macro) will result in the same compile error.

GFK-2259E Chapter 3 Writing a C Application 3-133

3

FST_EXE and FST_SCN Macros

In the file PACRxPlc.h (provided in the PACSystems C Toolkit), there are two macros,

FST_SCN and FST_EXE, that provide blocks with direct access to %S0001 (system first

scan indication) and with direct access to the block’s first execution bit. The FST_SCN

macro references %S0001 and acts exactly like the ladder logic reference FST_SCN

(%S0001). If a block is not called on the first PLC sweep, the macro FST_SCN should

not be used for initializing data in the block. In this case, FST_SCN would never be true.

The FST_EXE macro operates differently than the FST_SCN macro. There is no system

status bit associated with the first call to blocks. A block inherits FST_EXE from the

block that calls it. Therefore, if FST_EXE in the calling ladder logic program is true,

when the block is executed, the C macro FST_EXE will also be true. The value of

FST_EXE is determined by the calling ladder logic block, not by the C block. FST_EXE

may be TRUE (1) if the block is called multiple times from one ladder logic block or is

called from multiple ladder logic blocks. If the call from the ladder logic to the block is
conditional, it is possible that the block may never see FST_EXE as true.

LST_SCN Macro

The LSC_SCN macro provides access to the %S00002 (system last scan indication)

bit. This bit is 1 when the CPU transitions to Run mode and cleared when the CPU is

performing its final sweep. The CPU clears this bit (0) and then performs one more

complete sweep before transitioning to Stop or Stop Faulted mode. If the number of

last scans is configured to be 0, %S0002 will be cleared after the CPU is stopped and

user logic will not see this bit cleared.

If a C subroutine is not called on the last scan before a PLC enters Stop mode, the

LST_SCN macro should not be used in that block to capture data or trigger events on

the last scan. In such a case, the data or events would never be triggered because

the C subroutine was not called on the last scan.

3-134 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

Runtime Error Handling

When a C application executes in a PACSystems CPU, if an error is generated from

one of the runtime library functions or from incorrect interaction between the C

application and the CPU, the error will be detected and logged in the controller fault

table as an application fault on the CPU (rack 0, slot 1). Examples of such errors

include, but are not limited to the following:

1. Integer divide by 0

2. Stack overflow

3. Page fault

When a runtime error is logged into the controller fault table, the fault will contain a

text message describing the error.

An example of a runtime error and the resulting controller fault is illustrated in the
following C application, DV0.C:

Example:

#include “PACRxPlc.h”

int GefMain() {

 T_INT32 x=3, y=0;

 return(x/y);

}

The faults logged in the CPU and displayed by Machine Edition software appear as

follows:

Fault Description: Program runtime error

Fault Extra Data (in ASCII format): Div by 0

C Application Impact on PLC Memory

As displayed on the PC, the size of a .gefElf output file is the relocate-able image..

When the C application is stored to the CPU, the CPU must allocate more memory

than merely the .gefElf size. The additional space allocated by the CPU includes:

1. The located executable image of the .gefElf file

2. The saved the initial values of C application global data (initialized global data)

3. Pertinent information regarding the C application (internal processing overhead)

4. A copy of the original .gefElf file.

One method of determining the PLC memory usage is to view the status dialog in the

programmer and note the Program Logic usage of the folder stored without the C

Block and the same folder stored with the C Block.

GFK-2259E Chapter 3 Writing a C Application 3-135

3

Blocks as Timed or I/O Interrupt Blocks

Blocks may be used in the PLC as the target of a timed or I/O interrupt with the

following restrictions.

1. A block invoked as the result of a timed, I/O, or module interrupt may not have

parameters associated with the call. The block must have 0 input parameters and

0 output parameters. A block invoked as a sub block of a timed, I/O, or module

interrupt may have parameters associated with the call.

2. When a block is invoked as a timed, I/O, or module interrupt, all references to %L

memory will reference the same location in the %P table. (This action is the same

as when a block is called directly from the MAIN logic program.) When a block is

invoked as the sub block of a timed, I/O, or module interrupt block, all references

to %L memory will be references to the %L of the block from which they were

called.

3. Additional interrupts are not processed while a timed, I/O, or module interrupt

blocks and associated sub blocks are executing if preemptive block scheduling is

disabled. The preemptive block scheduling feature is available on PACSystems

firmware revision 2.0 and greater.

The following example and associated text cover the issues related to using C Blocks

when the same C application is going to be called during the normal execution of the

program and from a possible timed, I/O, or module interrupt.

Some C
Block

Calls
Block 1 Block 2 Interrupt Execution

Calls

Block 3 Block 4 Normal Execution

Figure 3-7. Interrupt Block Calls and C Blocks/FBKs

In the example shown in Figure 3-7, two separate execution paths are depicted:

normal execution and interrupt execution. Normal execution is initiated through the

standard sweep mechanism of the operating system calling the _MAIN block. Then

through a series of calls to sub-blocks, the example eventually calls ―some C block‖.

Interrupt execution is initiated by either a timed event or by an interrupt event

(interrupt input) coming into the CPU, causing the operating system to invoke a block.

Note that calling a C block terminates the call chain.

The example in Figure 3-7 shows that both the Normal Execution path AND the

Interrupt Execution path calling (through a chain of different blocks) the same C block.

For this example to work correctly, the C Block must be designed for re-entrant

operation.

3-136 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

3

A C Block developer should use the following guidelines to ensure the success of a

situation such as the one illustrated in Figure 3-7.

1. All variables used by the C Block should be stack-based (automatic) variables.

2. If there is any portion of the Block that operates on PLC global memories (%R,

%P, ...etc.), the Block must contain additional code to handle some sort of hand-

shaking between normal executions and interrupt executions to prevent data

incoherency. The hand-shaking could be accomplished by declaring a global flag

(variable) in the Block (or using an application-reserved location in PLC global

memory) that the Block sets just prior to writing to the PLC global memories and

then clears when the update is complete. Execution of the block (regardless of

normal or interrupt) should read the global flag before changing the PLC global

memory. If the flag is set, the C Block should not change the PLC global memory.

3. Use re-entrant versions of functions.

Restricting Compilation to a Specific Target

In most cases, you will want to the use the PACRXPlc.h header file and the

corresponding command line ―compileCPACRx to compile a C Block for any

PACSystems RX PLC. If you want to compile your application for a specific target

(such as the RX7i or RX3i), you can use the command line ―compileCPACRx7i‖ or

―compileCPACRx3i‖ respectively while still using the PACRXPlc.h header file.

However if you always want to restrict compilation for a specific target on a particular

C Block, you should use the PACRX7iPlc.h for the RX7i target or PACRX3iPlc.h for

the RX3i target. By using these header files, the C Block will successfully compile only

for the specified target. For example, if you use the ―PACRX7iPlc.h‖ header file in your

C Block source file, you must use the ―compileCPACRX7i‖ command line to

successfully compile the C Block. In this case if you attempt to use the

―compileCPACRX3i‖ command line, the compilation will fail.

Note: As of Release 3.5, C Block functionality between Rx3i and Rx7i targets is

essentially the same so that compilation for specific targets is currently not

needed. However, the PACSystems C Toolkit is structured to support

variation between targets in case it is needed in the future.

GFK-2259E 4-1

Debugging and Testing C Applications

Testing C Applications in the PC Environment

It is highly recommended that all C applications be tested prior to execution on the

PACSystems CPU. This is best accomplished by testing the application on the PC

using the PC debugging environment provided by the C Toolkit. This environment

provides various batch files that use the Cygwin compiler, linker and debugger to

produce an *.exe file that can be directly executed on the PC. The first step is to

develop the C Block source code using the editor of your choice. The C Toolkit

provides a set of stub functions for each of the C Toolkit PLC functions that are

compiled and linked to your C Block during the PC compilation process. These stub

functions are located in the “Targets\CommonFiles\TargetStubLibCommon”

subdirectory. You can modify these stub functions to simulate dynamic behavior.

When debugging on the PC, the C Run-Time library functions of the Cygwin

environment are used. However, some non-standard C library functions, such as

re-entrant forms of functions such as div_r() for div(), must be used on the PLC.

These functions are provided by the C Toolkit and compiled and linked with your C

Block during the PC compilation process. After compiling and linking the C block, you

can then run the application using the Cygwin environment to simulate and debug the

application.

4
Chapter

4-2 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

4

The following steps describe how to debug an application on the PC:

1. Create C Test driver code that initializes memory pointers and calls the C Block to

be tested. An example is given below:

/* C PC Driver code - ctkPcDriver.c */

#include “PACRXPlc.h” /* For any PACSystems PLC */

/* For RX3i use PACRX3iPLC.h For Rx7i use PACRx7iPLC.h */

#include "ctkInitCBlock.h"

/* declare GefMain as external function in another file*/

extern int GefMain(T_WORD *pR8, T_BYTE *pI1000, T_BYTE *pM500);

int main(int argc, char *argv[])

{

 initCBlock(); /* creates ref mem and initializes pointers to that

 memory*/

 GefMain(&RW(8), &Ib(1000), &Mb(500)); /* calling main passing

 pointers to %R8, %I1000 and

 %M500 */

 return 0;

}

To avoid having to remove or bypass this code when compiling for the PLC, it is

recommended that this code reside in another C source file and then compiled with

the C Block under test.

2. Create your C Block application. An example is shown below:

/* myCBlock.c */

#include <stdio.h>

#include <PACRXPlc.h>

T_INT32 status;

T_INT32 failCount = 0;

int GefMain(T_WORD *pR8, T_BYTE *pI1000, T_BYTE *pM500)

{

 if (*pR8 != 0)

 {

 RW(10) = * pR8; /*write %R8 to %R10 as word */

 RD(12) = failCount;

 return GEF_EXECUTION_OK;

 }

 else

 {

 *pM500 = *pI1000; /* Copy %I1000 (one byte) to %M500) */

 status = GEF_EXECUTION_ERROR;

 failCount++;

 return status;

 }

}

GFK-2259E Chapter 4 Debugging and Testing C Applications 4-3

4

3. Optionally add code to the PLC C stub functions to simulate the desired PLC

behavior. Note: PLC C stub function files are located in the following directory:

<yourInstallDir>\PACSystemsCToolkit\Targets\CommonFiles\TargetStubLibCommon

4. Create sourcesDebug file that specifies which files to compile together: An

example is given below:

Note: Comments can be included by putting a "#" in the first column.

sourcesDebug file

CFILENAMES = myCBlock.c ctkPcDriver.c

5. Start the C Toolkit. (Double click the desktop icon (PACSystems(TM) C Toolkit) or

use the Start menu to execute the file ctkPACS.bat located at the Toolkit's root

directory.)

6. Within the DOS window created in step 4, compile the C Block for the PC using

the following command in the same directory containing the source files and the

sourcesDebug file:

CompileCDebugPACRX

(For Rx7i targets, use CompileCDebugPACRX7i; for RX3i targets, use

CompileCDebugPACRX3i)

7. Run the Cygwin debugger using the following command:

debugPACRX pc\myCBlock.exe

(For Rx7i targets, use DebugPACRX7i; for RX3i targets, use DebugPACRX3i)

This will bring up a Windows based debugger that allows setting break points, single

step, viewing and changing memory, etc. Use the help facility within this application

for information on how to use the debugger.

Caution

The Toolkit places copies of the PLCC stub file source code into
the “\pc” directory to allow source line debugging. You should
not modify these files because they will be replaced with the
master stub files located in
“Targets\CommonFiles\TargetStubLibCommon” each time your
source files are recompiled.

8. The C Block can also be run at the DOS prompt with the following command:

runPACRX pc\myCBlock.exe

(For Rx7i targets, use runPACRX7i pc\myCBlock.exe; for Rx3i targets, use

runPACRX3i pc\myCBlock.exe)

Debugging in this case requires PLCC_MessageWrite() statements within the

application to indicate program flow and state.

4-4 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

4

Debugging C Applications in the PLC

There are two primary ways to debug the C application operating in the PLC:

message mode writes to serial port and reference table monitoring.

Message Mode Debugging

The use of PLCC_MessageWrite to debug a C application running in a PACSystems is

very similar to using PLCC_MessageWrite to debug the same C application on the PC.

The PLCC_MessageWrite statements should be placed in the source code to provide a

road map of the execution path and to display the value of any key data items.

Note: For PLCC_MessageWrite to work, the CPU’s serial port must be configured for

Message mode. If the CPU’s serial port is not configured for Message mode

and PLCC_MessageWrite is called, no characters are placed into the print

queue and the return value from PLCC_MessageWrite is -1.

Reference Table Monitoring

As with PLCC_MessageWrite debugging, the execution path and key data items may

be determined by modifying a C application to place this information into unused

areas of the global PLC reference tables (%R, %W, %M, %T, %P, etc.) and then

viewing the saved execution road map and key data items through the programmer’s

online reference display(s).

GFK-2259E 5-1

Conversion Notes and Series 90 Compatibility

For the most part C Block programming with the PACSystems is very similar to the

Series 90-70 and Series 90-30 PLCs. This chapter describes differences that must be

considered when converting Series 90-70 or Series 90-30 applications to

PACSystems. C blocks in existing Series 90 program folders must be recompiled

using the PACSystems C Toolkit.

Series 90 Compatibility Header Files (PLCC9070.h and PLCC9030.h)
To minimize conversion issues when converting Series 90 applications, use the

appropriate include file in your C Block application:

Series 90-70 Use PLCC9070.h instead of PACRXPLC.h or PACRX7iPlc.h.

Series 90-30

Use PLCC9030.h instead of PACRXPLC.h or PACRX3iPlc.h.

If a C block is used as the _MAIN block in a 90-30 folder, you must compile
the C source into a program block and create a one-rung main program in
LD that calls this block.

PLCC9070.h

This file equates some of the 90-70 C Toolkit names to the equivalent PACSystems C

Toolkit names. For example, in the 90-70 C Toolkit many run-time functions have a

“far” version such as _fstrcat. Since the PACSystems does not require the far version

of functions, the PLCC9070.h file equates them to the non-far function such as strcat

for _fstrcat. Similarly, the 90-70 C Toolkit used OK and ERROR as defines for the

return value that controls the state of ENO. These are equated to

GEF_EXECUTION_OK and GEF_EXECUTION_ERROR respectively. Also, this file

equates some of the common basic types such as byte and word to the equivalent

PACSystems types, T_BYTE and T_WORD.

PLCC9030.h

This file equates some of the 90-30 C Toolkit names to the equivalent PACSystems C

Toolkit names. Similar to the 90-70 version, the PLC9030.h file equates far versions of

functions to non-far versions. This file also equates common basic types such as byte

and word to the equivalent PACSystems types, T_BYTE and T_WORD.

For new applications, one of the following target header files should be used:

PACRXPLC.h Compiles C Blocks that work with all PACSystems CPU

targets.

PACRX3iPLC.h Compiles C Blocks that work with PACSystems RX3i target.

PACRX7iPLC.h Compiles C Blocks that work with PACSystems RX7i target.

5
Chapter

5-2 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

5

Writing Directly to Discrete Memory
If the application uses the Series 90 style macros that write directly to discrete

reference memory (%I, %Q etc.), overrides will not be respected and the

corresponding transition bit will not be set because this functionality is not

implemented in hardware on the PACSystems product. Since there is not a one-to-

one correspondence in the functionality of the Series 90, and PACSystems discrete

macros, the PACSystems discrete macro definitions are similar to the Series 90

macros, but slightly different to flag potential overrides and transition issues. For

example, the macro that accessed a byte of %I memory in Series 90 PLCs was called

IB(). In the PACSystems C Toolkit, it is called Ib(). If you want to overrides to be

respected and to set the corresponding transition bit, you must use a set of new

read/write PLC functions. Here are some compatibility/conversion examples:

a. Direct assignment to discrete reference. Here is an example of Series 90

C code:

IB(1) = 0x33;

Here is how the code must be written for the PACSystems to have the same

functionality as the Series 90:

WritePlcByte(I_MEM, 1, 0x33,FALSE);

The first parameter of the WritePlcByte function determines which reference

table to access. The second parameter of determines the reference address

to access. The third parameter determines the value to write to the reference

table. The fourth parameter determines if the byte is written to the most or

least significant byte if using a word reference. Since the write occurs to a

discrete reference the parameter is unused. If the “RefTable” or “address” are

out of range, no reference memory values are changed and the function

returns GEF_ERROR. If the “RefTable” and “address” are within range, the

function returns GEF_OK. The prototype for this function is shown below:

T_INT32 WritePlcByte(T_WORD RefTable, T_DWORD address,

 T_BYTE writeValue, T_BOOLEAN msbByte);

b. Reading a discrete reference. Here is an example of Series 90 C code:

MyVar1 = IB(1);

Because this is a read operation that does not need to take into account

override and transition bits, you have the choice of using a macro or a

function call to get the same functionality as the Series 90 PLC.

Macro:

MyVar1 = Ib(1);

Function Call:

MyVar1 = ReadPlcByte(I_MEM, 1, FALSE);

GFK-2259E Chapter 5 Conversion Notes and Series 90 Compatibility 5-3

5

c. Using test bit, bit set or bit clear functions. In this case, there is no coding

change from Series 90 to the PACSystems because a function is

implemented using the same syntax as the macro. The function carries out

the proper behavior with respect to overrides and transition bits. From a reuse

standpoint, the macro call looks exactly the same as the function call so there

is no coding change required. For example, the following 90-70 C code does

not need to change:

if (BIT_TST_I(1))

{

 BIT_SET_I(2);

}

else

{

 BIT_CLR_I(2);

}

d. Other Macros. Most other macros can be used just as they were used in the

Series 90 PLC and require no conversion. A complete list of all macros and

their compatibility with the 90-70 and 90-30 macros is located in Appendix A.

PLC Target Library Function Compatibility Issues
Most 90-70 and 90-30 Target Library functions are supported but there are some

compatibility issues. A complete list of all PACSystems Target Library functions and

compatibility issues are described in Appendix A.

5-4 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

5

Compatibility Issues with Retentive Global Variables
In the Series 90, C Block’s retentive global variables are uninitialized and denoted

with the “static” attribute. All other global variables are non-retentive. Although not

documented in the Series 90, uninitialized non-retentive global variables were set to 0

on a run to stop transition. For the PACSystems C Blocks, both static and non-static

uninitialized global variables are retentive and are truly uninitialized (not set to 0).

Users who relied on uninitialized non-static variables being set to 0 on a stop to run

transition will need to add initialization code. PACSystems C Blocks with initialized

variables are non-retentive which is the same behavior as the Series 90.

“int” Type Issues
The “int” basic type in the 90-70 and 90-30 represents a 16 bit signed number.

However, PACSystems is a 32 bit system so the “int” basic type is a 32 bit signed

number. You will need to evaluate your programs to determine if this conversion

causes any issues. Here are some examples:

int myVar;

myVar = RI(1); /* sets myVar to equal %R1 as a 16 bit signed value

*/

When this is compiled and executed on a PACSystems PLC, the least significant 16

bits will be set equal to %R1. The most significant 16 bits will be set to 0 unless the

number is negative in which case the most significant 16 bits will be set to 0xffff (sign

extended). This case should not typically cause any problems because the cast is

from a smaller to a higher number of bits.

However, the reverse case may cause problems in some cases.

int myVar;

RI(1) = myVar; /* sets %R1 with a 32 bit signed value */

In this case, the least significant 16 bits of myVar will be written to %R1. Thus, if the

value of myVar is outside the range of a signed 16 bit number (+32767 to -32768),

then the value in %R1 will be a signed 16 bit truncated version of myVar. For example

if myVar is 32768 (0x00008000), the value in %R1 will be -32768 (0x8000).

“enum” Type Issues
The “enum” basic type in the 90-70 and 90-30 represents a 16 bit signed number.
However, PACSystems is a 32 bit system so the “enum” basic type is a 32 bit signed

number. You will need to evaluate your programs to determine if this conversion

causes any issues.

GFK-2259E Chapter 5 Conversion Notes and Series 90 Compatibility 5-5

5

Non-Standard C Library Functions
Non-Standard C Library functions are not supported in the PACSystems C Toolkit.

See appendix B for functions that are not supported.

Entry Point
In the Series 90 C Toolkit, the entry point into the user application was main(). For the

PACSystems C Toolkit, the entry point is GefMain().

C Standalone Programs
C standalone programs are not supported. However, C program applications that do

not rely on the C program scheduling features can be compiled and executed as C

blocks.

Use of Input Parameters as Pointers to Discrete Memory Tables
In the PACSystems C Toolkit if the user application is passed a pointer to one of the

discrete memory tables (%I, %Q etc.), for example as one of the input parameters to

GefMain(),and the pointer is used to write to discrete reference table memory,

overrides and transitions are not taken into account for the write operation. When a

discrete memory write operation occurs via a pointer in the Series 90 PLCs, overrides

and transitions are taken into account.

For the PACSystems C Toolkit, you should use the following function when writing

directly to discrete memory via a pointer if you want overrides and transition bits to be

respected:

T_INT32 PlcMemCopy(void *pDestination, void *pSource, T_DWORD

size);

GFK-2259E 6-1

Installed Sample Blocks

In the C Toolkit directory structure, there are two subdirectories under the Projects

directory that contain examples of blocks, SampleProj1 and SampleProj2.

SampleProj1
The SampleProj1 directory contains three sample C files that generate a C Block from

a single C source file. Each file is discussed below:

■ ctkCBlockTest.c is intended for compilation for the RX7i, RX3i, or PACRX and

makes a call to every function and macro supported by the C Toolkit. This block is

an example of an application without input/output parameters.

Because ctkCBlockTest exercises all available toolkit routines and macros, it will

not execute on a PACSystems CPU with the default configuration. See the setup

note at the top of the C file for more information.

■ ctkCBlockTestParams_7_7.c provides a simple example using seven input and

seven output parameters. The application equates the output to the inputs,

simulating a simple move type of operation. In addition, it provides an example of

controlling ENO by returning GEF_EXECUTION_ERROR (ENO off) if input 1

(pCoolantTemp is greater than 1000) or GEF_EXECUTION_OK (ENO on)

otherwise.

To execute this sample block on a PACSystems CPU, the C block must be setup

as a parameterized block with 7 WORD inputs and 7 WORD outputs.

■ ctkCBlockTestPc.c is a version similar to ctkCBlockTest.C with additional driver

code at the end of the file so that it can be compiled and run on the PC.

6
Chapter

6-2 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

6

SampleProj2

The SampleProj2 directory contains an example for compiling multiple C sources into

a single C Block. The files to be compiled and linked together for the PLC execution

are specified in the “sources“ file. Similarly, the files to be compiled and linked

together for PC debugging are specified in the sourcesDebug file. This directory also

has examples of precompiled object files.

1. ctkCBlockTest4.plc0, ctkCBlockTest5.plc0, and ctkCBlockTest.plc0 for PLC

linking.

2. ctkCBlockTest4.pc0, ctkCBlockTest5.pc0, ctkCBlockTest.pc0 for PC linking.

These files were produced by compiling their corresponding C source file with the

following command for the PLC object files:

compileCPACRX7i ctkCBlockTest4 DisableGefLibLink

And the following command for the PC object files:

compileCDebugPACRX7i ctkCBlockTest4 DisableGefLibLink

The “sources” and “sourcesDebug” files respectively specify the use of these object

files for compilation as opposed to the source file.

All files are compiled and linked together with one of the following commands for the

PLC:

compileCPACRX7i

compileCPACRX3i

compileCPACRX

And one of the following commands for the PC:

compileCDebugPACRX7i

compileCDebugPACRX3i

compileCDebugPACRX

These files also illustrate the use of the serial port message mode read/write

functions.

This sample block will not execute on a PACSystems CPU with the default

configuration. See the setup note at the top of ctkCBlockTest1.c for more information.

GFK-2259E A-1

Target Library Functions

As a general note, the following functions will set errno in the current context, if the

function does not return status in some form. errno contains an error code from the

last Target Library or C Run Time Library function which encountered an error. You

can access errno via the function PLCC_GetErrno().

Target Library Reference Memory Functions and Macros

Implemented in ctkRefMem.h

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

BIT_TST_I(address); Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_I(T_DWORD address); Same functionality as 90-70 and 90-30, but implemented as a
function rather than a macro to respect overrides and to change
corresponding transition bits. This function also returns an
GEF_OK status if the address is within range and an
GEF_ERROR status if the address is not within range. In the
GEF_ERROR case, the bit is not changed.

Errnos:
TLIB_ERRNO_OFFSET_RANGE_ER (Address is outside of valid
range).

T_INT32 BIT_CLR_I(T_DWORD address);

BIT_TST_Q(address); Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_Q(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status
as BIT_SET_I(). T_INT32 BIT_CLR_Q(T_DWORD address)

BIT_TST_M(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_M(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status
as BIT_SET_I(). T_INT32 BIT_CLR_M(T_DWORD address)

BIT_TST_T(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_T(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status
as BIT_SET_I(). T_INT32 BIT_CLR_T(T_DWORD address)

BIT_TST_G(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_G(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status
as BIT_SET_I(). T_INT32 BIT_CLR_G(T_DWORD address)

 BIT_TST_GA(x) not supported (90-70 only)

 BIT_SET_GA(x) not supported (90-70 only)

 BIT_CLR_GA(x) not supported (90-70 only)

 BIT_TST_GB(x) not supported (90-70 only)

A
Appendix

A-2 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

 BIT_SET_GB(x) not supported (90-70 only)

 BIT_CLR_GB(x) not supported (90-70 only)

 BIT_TST_GC(x) not supported (90-70 only)

 BIT_SET_GC(x) not supported (90-70 only)

 BIT_CLR_GC(x) not supported (90-70 only)

 BIT_TST_GD(x) not supported (90-70 only)

 BIT_SET_GD(x) not supported (90-70 only)

 BIT_CLR_GD(x) not supported (90-70 only)

 BIT_TST_GE(x) not supported (90-70 only)

 BIT_SET_GE(x) not supported (90-70 only)

 BIT_CLR_GE(x) not supported (90-70 only)

BIT_TST_SA(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_SA(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status
as BIT_SET_I(). T_INT32 BIT_CLR_SA(T_DWORD address)

BIT_TST_SB(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_SB(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status
as BIT_SET_I(). T_INT32 BIT_CLR_SB(T_DWORD address)

BIT_TST_SC(address) Macro compatible with 90-70 and 90-30.

T_INT32 BIT_SET_SC(T_DWORD address) Function compatible with 90-70 and 90-30. Same return status
as BIT_SET_I(). T_INT32 BIT_CLR_SC(T_DWORD address)

BIT_TST_R(address, bitPosition) Macros compatible with 90-70 and 90-30.

BIT_SET_R(address, bitPosition)

BIT_CLR_R(address, bitPosition)

BIT_TST_AI(address, bitPosition)

BIT_SET_AI(address, bitPosition)

BIT_CLR_AI(address, bitPosition)

BIT_TST_AQ(address, bitPosition)

BIT_SET_AQ(address, bitPosition)

BIT_CLR_AQ(address, bitPosition)

BIT_TST_P(address, bitPosition) Macros compatible with 90-70.

BIT_SET_P(address, bitPosition)

BIT_CLR_P(address, bitPosition)

BIT_TST_L(address, bitPosition)

BIT_SET_L(address, bitPosition)

BIT_CLR_L(address, bitPosition)

BIT_TST_S(address) Macros compatible with 90-70 and 90-30.

BIT_TST_W(address, bitPosition) New Macros to access %W memory. Not compatible with
Series 90.

BIT_SET_W(address, bitPosition)

BIT_CLR_W(address, bitPosition)

GFK-2259E Appendix A Target Library Functions A-3

A

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

T_INT32 setBit(T_WORD RefTable,
 T_DWORD offset,
 T_WORD bitNumber)

New function to generically set a bit reference memory. The
bitNumber is only used for word type memory. The function
returns GEF_OK if the bit is set and GEF_ERROR if the bit
cannot be set.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER
(offset is outside of valid range).

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

T_INT32 clearBit(T_WORD RefTable,
 T_DWORD offset,
 T_WORD bitNumber)

New function to generically clear a bit in reference memory. The
bitNumber is only used for word type memory. The function
returns GEF_OK if the bit is set and GEF_ERROR if the bit
cannot be set.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER (offset is outside of valid
range).

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

Ib(address) Implemented as macro compatible with 90-70 and 90-30 syntax,
with the exception that the name has been changed from IB to
Ib. However, this macro does not respect overrides and does not
set corresponding transition bits so the functionality is different
than the 90-70 and 90-30. You should use the WritePlcByte()
function to get the same functionality as the 90-70 and 90-30.
(See next item.)

T_INT32 WritePlcByte(T_WORD RefTable,
 T_DWORD offset,
 T_BYTE writeValue,
 T_BOOLEAN msbByte)

This function writes to reference memory taking into account
overrides and transition bits. The reference memory in the
specified Reference Table (RefTable) and at the specified
“offset” is written using the value of “writeValue”. If the “offset” is
out of range, no reference memory values are changed and the
function returns GEF_ERROR. If the offset is within range, the
function returns GEF_OK. msbByte determines whether the
MSB or LSB of a word type reference is written. Note: this
function will only affect the transition bits that actually change.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

T_BYTE ReadPlcByte (T_WORD RefTable,
 T_DWORD offset,
 T_BOOLEAN msbByte)

The reference memory in the specified Reference Table
(RefTable) and at the specified “offset” is read and returned by
the function. Errno is set if there is an error reading the value.
msbByte determines whether the MSB or LSB of a word type
reference is read.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

Qb(address) Similar issues as Ib()

Mb(address) Similar issues as Ib()

A-4 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

Tb(address) Similar issues as Ib()

Gb(address) Similar issues as Ib()

 GAB(x) not supported.

 GBB(x) not supported

 GCB(x) not supported

 GDB(x) not supported

 GEB(x) not supported

Sb(address) Similar issues as Ib(); This is read-only and the compiler will
issue an error if you attempt to write to this memory using this
macro.

SAb(address) Similar issues as Ib()

SBb(address) Similar issues as Ib()

SCb(address) Similar issues as Ib()

RB(address, highByte) Macros compatible with 90-70 and 90-30.

AIB(address, highByte)

AQB(address, highByte)

PB(address, highByte) Macros compatible with 90-70.

LB(address, highByte)

WB(address, highByte) New Macro to support %W memory. Not supported by
Series 90.

Iw(address) Implemented as macro compatible with 90-70 and 90-30 syntax
with the exception that the name has been changed from IW to
Iw. However, this macro does not respect overrides and does
not set corresponding transition bits so the functionality is
different than the 90-70 and 90-30. You should use the
WritePlcWord() function to get the same functionality as the 90-
70 and 90-30.(see next item).

T_INT32 WritePlcWord(T_WORD RefTable,
 T_DWORD offset,
 T_WORD writeValue)

This function writes to reference memory taking into account
overrides and transition bits. A word (16 unsigned bits) of
reference memory in the specified Reference Table (RefTable)
and at the specified “offset” is written with the “writeValue”. If the
“offset” is out of range, no reference memory values are
changed and the function returns GEF_ERROR. If the “offset” is
within range, the function returns GEF_OK. Note: this function
will only affect the transition bits that actually change.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

T_WORD ReadPlcWord (T_WORD RefTable,
 T_DWORD offset)

A word (16 unsigned bits) of reference memory in the specified
Reference Table (RefTable) and at the specified “offset” is read
and returned by the function. Errno is set if there is an error
reading the value.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

GFK-2259E Appendix A Target Library Functions A-5

A

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

Qw(address) Similar issues as Ib()

Mw(address)

Tw(address)

Gw(address)

 GAW(x) not supported.

 GBW(x) not supported.

 GCW(x) not supported.

 GDW(x) not supported.

 GEW(x) not supported.

Sw(address) Similar issues as Ib(). This is read-only and the compiler will
issue an error if you attempt to write to this memory using this
macro.

SAw(address) Similar issues as Ib()

SBW(address) Similar issues as Ib()

SCw(address) Similar issues as Ib()

RW(address) Macro Compatible with 90-70 and 90-30.

AIW(address)

AQW(address)

PW(address) Macro Compatible with 90-70.

LW(address)

WW(address) New Macro to support %W memory. Not supported by
Series 90.

Ii(address) Implemented as macro compatible with 90-70 and 90-30 syntax
with the exception that the name has been changed from II to Ii.
However, this macro does not respect overrides and does not
set corresponding transition bits so the functionality is different
than the 90-70 and 90-30. You should use the WritePlcInt()
function to get the same functionality as the 90-70 and 90-30.
(see next item).

T_INT32 WritePlcInt(T_WORD RefTable,
 T_DWORD offset,
 T_INT16 writeValue)

This function writes to reference memory taking into account
overrides and transition bits. Reference memory in the specified
Reference Table (RefTable) and at the specified “offset” is
written with the “writeValue” as a 16 bit signed integer. If the
“offset” is out of range, no reference memory values are
changed and the function returns GEF_ERROR. If the offset is
within range, the function returns GEF_OK. Note: this function
will only affect the transition bits that actually change.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

A-6 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

T_INT16 ReadPlcInt (T_WORD RefTable,
 T_DWORD offset)

Reference memory in the specified Reference Table (RefTable)
and at the specified “offset” is read as a 16 bit signed integer
and returned by the function. Errno is set if there is an error
reading the value.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

Qi(address) Similar issues as Ib().

Mi(address)

Ti(address)

Gi(address)

 GAI(x) not supported

 GBI(x) not supported

 GCI(x) not supported

 GDI(x) not supported

 GEI(x) not supported

Si(address) Similar issues as Ib(). This is read-only and the compiler will
issue an error if you attempt to write to this memory using this
macro.

SAi(address) Similar issues as Ib().

SBi(address)

SCi(address)

RI(address) Macros Compatible with 90-70 and 90-30.

AII(address)

AQI(address)

PI(address) Macros Compatible with 90-70.

 LI(address)

WI(address) New Macro to support %W memory

Id(address) Implemented as macro compatible with 90-70 and 90-30 syntax
with the exception that the name has been changed from ID to
Id. However, this macro does not respect overrides and does not
set corresponding transition bits so the functionality is different
than the 90-70 and 90-30. You should use the WritePlcDword()
function to get the same functionality as the 90-70 and 90-30.
(see next item).

GFK-2259E Appendix A Target Library Functions A-7

A

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

T_INT32 WritePlcDint (T_WORD RefTable,
 T_DWORD offset,
 T_DWORD writeValue)

This function writes to reference memory taking into account
overrides and transition bits. Reference memory in the specified
Reference Table (RefTable) and at the specified “offset” is
written with the “writeValue” as a 32 bit signed integer. If the
“offset” is out of range, no reference memory values are
changed and the function returns GEF_ERROR. If the offset is
within range, the function returns GEF_OK. Note: this function
will only affect the transition bits that actually change.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_READ_ONLY_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

T_INT32 ReadPlcDint (T_WORD RefTable,
 T_DWORD offset)

Reference memory in the specified Reference Table (RefTable)
and at the specified “offset” is read as a 32 bit signed integer
and returned by the function. Errno is set if there is an error
reading the value.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

Qd(address) Similar issues as Ib()

Md(address)

Td(address)

Gd(address)

 GAD(x) not supported

 GBD(x) not supported

 GCD(x) not supported

 GDD(x) not supported

 GED(x) not supported

Sd(address) Similar issues as Ib(). This is read-only and the compiler will
issue an error if you attempt to write to this memory using this
macro.

SAd(address) Similar issues as Ib().

SBd(address)

SCd(address)

RD(address) Macros compatible with the 90-70 and 90-30.

AID(address)

AQD(address)

PD(address) Macros compatible with the 90-70.

 LD(address)

WD(address) New Macro to support %W memory

RF(address) Macros compatible with the 90-70 and 90-30.

AIF(address)

AQF(address)

PF(address) Macros compatible with the 90-70.

LF(address)

A-8 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

WF(address) New Macro to support %W memory

AIDbl(address)

AQDbl(address)

LDbl(address)

PDbl(address)

RDbl(address)

WDbl(address)

T_INT32 WritePlcDouble (T_WORD RefTable,
T_DWORD offset,
T_REAL64 writeValue);

This function writes to reference memory taking into account
overrides and transition bits. Reference memory in the
specified Reference Table (RefTable) and at the specified
“offset” is written with the “writeValue” as a 64 bit floating point
value. If the “RefTable” or “offset” are out of range, no
reference memory values are changed and the function
returns GEF_ERROR. If the “offset” is within range, the
function returns GEF_OK. Note: this function will affect only
the transition bits that actually change.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER
TLIB_ERRNO_READ_ONLY_ER
TLIB_ERRNO_INVALID_REF_TABLE_ER

T_REAL64 ReadPlcDouble (T_WORD
RefTable, T_DWORD offset);

Reference memory in the specified Reference Table
(RefTable) and at the specified offset is read as a 64 bit
floating point value and returned by the function. Errno is set if
there is an error reading the value.

Errnos:

TLIB_ERRNO_OFFSET_RANGE_ER

TLIB_ERRNO_INVALID_REF_TABLE_ER

T_INT32 PlcMemCopy(void *pDestination,
 void *pSource,
 T_DWORD size)

This function writes to reference memory taking into account
overrides and transition bits. The function writes data pointed to
by pDestination based on the memory pointed to by pSource.
The length of data written is determined by the “size” parameter
which is in units of bytes (8 bits).

Errnos:

TLIB_ERRNO_INVALID_SOURCE_POINTER (Considers pointer

and size)

TLIB_ERRNO_INVALID_DEST_POINTER (Considers pointer and

size)

TLIB_ERRNO_READ_ONLY_ER

BIT_TST_I_TRANS(address) Macros compatible with the 90-70 and 90-30.

BIT_TST_Q_TRANS(address)

BIT_TST_M_TRANS(address)

BIT_TST_T_TRANS(address)

BIT_TST_G_TRANS(address)

 BIT_TST_GA_TRANS(address) not supported

 BIT_TST_GB_TRANS(address) not supported

 BIT_TST_GC_TRANS(address) not supported

 BIT_TST_GD_TRANS(address) not supported

GFK-2259E Appendix A Target Library Functions A-9

A

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

 BIT_TST_GE_TRANS(address) not supported

BIT_TST_S_TRANS(address) Macros compatible with 90-70 and 90-30.

BIT_TST_SA_TRANS(address)

BIT_TST_SB_TRANS(address)

BIT_TST_SC_TRANS(address)

IB_TRANS(address) Macros compatible with 90-70 and 90-30. This is read-only and
the compiler will issue an error if you attempt to write to this
memory using this macro.

QB_TRANS(address)

MB_TRANS(address)

TB_TRANS(address)

GB_TRANS(address)

 GAB_TRANS(x) not supported

 GBB_TRANS(x) not supported

 GCB_TRANS(x) not supported

 GDB_TRANS(x) not supported

 GEB_TRANS(x) not supported

SB_TRANS(address) Macros compatible with 90-70 and 90-30. This is read-only and
the compiler will issue an error if you attempt to write to this
memory using this macro.

SAB_TRANS(address)

SBB_TRANS(address)

SCB_TRANS(address)

BIT_TST_I_DIAG(address) Macros compatible with 90-70. This is read-only and the
compiler will issue an error if you attempt to write to this memory
using this macro.

BIT_TST_Q_DIAG(address)

IB_DIAG(address)

QB_DIAG(address)

AIB_DIAG(address)

AQB_DIAG(address)

AI_HIALRM(address) Macros compatible with 90-70.

 AI_LOALRM(address)

AIB_FAULT(address) Macro compatible with 90-70.

AIB_FAULT is non-zero for conditions that set a fault contact or
generate a fault entry in the I/O fault table, such as Overrrange
and Underrange.

AQB_FAULT(address) Macros compatible with 90-70.

 AI_OVERRANGE(address)

AI_UNDERRANGE(address)

AQ_OVERRANGE(address) Macro not supported by 90-70.

AQ_UNDERRANGE(address) Macro not supported by 90-70.

T_DWORD refMemSize(T_WORD RefTable)

New generic memory size function. The function returns the
memory size based on the RefTable segment selector.

Errnos:

TLIB_ERRNO_INVALID_REF_TABLE_ER

A-10 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

L_SIZE Compatible with the 90-70 but is implemented as a function; for
example:

#define L_SIZE refMemSize(L_MEM)
P_SIZE

R_SIZE Compatible with the 90-70 and 90-30. Implemented as a
function.

AI_SIZE

AQ_SIZE

I_SIZE

Q_SIZE

T_SIZE

M_SIZE

G_SIZE

 GA_SIZE not supported

 GB_SIZE not supported

 GC_SIZE not supported

 GD_SIZE not supported

 GE_SIZE not supported

SA_SIZE Compatible with the 90-70 and 90-30 but implemented as a
function; for example:

#define SA_SIZE refMemSize(SA_MEM)

SB_SIZE

SC_SIZE

S_SIZE

W_SIZE New Macro to support %W memory. Not supported by
Series 90.

I_DIAGS_SIZE Compatible with the 90-70 but implemented as a function; for
example:

#define I_DIAGS_SIZE refMemSize(I_DIAG_MEM)
Q_DIAGS_SIZE

AI_DIAGS_SIZE

AQ_DIAGS_SIZE

RACKX(r) Compatible with the 90-70 but implemented as a function call to
the function rackX.()

Errnos:

TLIB_ERRNO_INVALID_RACK

SLOTX(r,s) Compatible with the 90-70 but implemented as a function call to
slotX();

Errnos:

TLIB_ERRNO_INVALID_RACK

TLIB_ERRNO_INVALID_SLOT

BLOCKX(r,s,b,sba) Compatible with the 90-70 but implemented as a function call to
blockX();

Errnos:

REF_ERRNO_INPUT_OUT_OF_RANGE

RSMB(x) Compatible with the 90-70 but implemented as a function call to
rsmb();

Errnos:

TLIB_ERRNO_INVALID_RACK

FST_SCN Macro compatible with 90-70.

GFK-2259E Appendix A Target Library Functions A-11

A

Target Library Reference Memory
Functions & Macros

Series 90 PLC Library Compatibility
Notes & Issues

LST_SCN Macro to provide access to the %S00002 (system last scan
indication) bit. Compatible with Series 90-30.

T_10MS Macros compatible with 90-70 and 90-30.

T_100MS

T_SEC

T_MIN

ALW_ON

ALW_OFF

SY_FULL

IO_FULL

FST_EXE Macro compatible with the 90-70. Note: FST_EXE value is
inherited from the calling block.

Target Library Fault Table Functions, Structures and Constants

Implemented in ctkPlcFault.h
Target Library Fault Table Functions,

 Structures and Constants
Series 90 PLC Library Compatibility Notes & Issues

Fault Table Functions

T_INT32 PLCC_read_fault_tables(struct read_fault_tables_rec *x);

/* This service request will read the entire PLC or I/O fault table.*/

#define PLC_FAULT_TABLE 0

#define IO_FAULT_TABLE 1

#define NUM_LEGACY_PLC_FAULT_ENTRIES 16

#define NUM_LEGACY_IO_FAULT_ENTRIES 32

struct time_stamp_rec{

 T_BYTE second; /* BCD format, seconds in low-order nibble, */

 /* tens of seconds in high-order nibble. */

 T_BYTE minute; /* BCD format, same as for seconds. */

 T_BYTE hour; /* BCD format, same as for seconds. */

 T_BYTE day; /* BCD format, same as for seconds. */

 T_BYTE month; /* BCD format, same as for seconds. */

 T_BYTE year; /* BCD format, same as for seconds. */

};

struct PLC_flt_address_rec{

 T_BYTE rack;

 T_BYTE slot;

 T_WORD task;

};

struct IO_flt_address_rec{

 T_BYTE rack;

 T_BYTE slot;

 T_BYTE IO_bus;

 T_BYTE block;

 T_WORD point;

Compatible with the Series 90 library, with the exception that the union
must be named as required by the GNU C compiler. Therefore, to get
access to a particular fault, the following syntax must be used:

myFaultRec.faultEntry.PLC_faults[0]…

A-12 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library Fault Table Functions,
 Structures and Constants

Series 90 PLC Library Compatibility Notes & Issues

};

struct reference_address_rec{

 T_BYTE memory_type;

 T_WORD offset;

};

struct PLC_fault_entry_rec{

 T_BYTE long_short;

 T_BYTE reserved[3];

 struct PLC_flt_address_rec PLC_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_WORD error_code;

 T_WORD fault_specific_data[12];

 struct time_stamp_rec time_stamp;

};

struct IO_fault_entry_rec{

 T_BYTE long_short;

 struct reference_address_rec reference_address;

 struct IO_flt_address_rec IO_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_BYTE fault_category;

 T_BYTE fault_type;

 T_BYTE fault_description;

 T_BYTE fault_specific_data[21];

 struct time_stamp_rec time_stamp;

};

struct PLC_ext_fault_entry_rec{

 T_BYTE long_short;

 T_BYTE reserved[3];

 struct PLC_flt_address_rec PLC_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_WORD error_code;

 T_WORD fault_specific_data[12];

 struct ext_time_stamp_rec time_stamp;

 T_WORD fault_id;

};

struct IO_ext_fault_entry_rec{

 T_BYTE long_short;

 struct reference_address_rec reference_address;

 struct IO_flt_address_rec IO_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_BYTE fault_category;

 T_BYTE fault_type;

 T_BYTE fault_description;

 T_BYTE fault_specific_data[21];

 struct ext_time_stamp_rec time_stamp;

 T_WORD fault_id;

GFK-2259E Appendix A Target Library Functions A-13

A

Target Library Fault Table Functions,
 Structures and Constants

Series 90 PLC Library Compatibility Notes & Issues

};

struct read_fault_tables_rec {

 T_WORD table; /* PLC_FAULT_TABLE or IO_FAULT_TABLE */

 T_WORD zero; /* must be set to zero */

 T_WORD reserved[13];

 struct time_stamp_rec time_since_clear;

 T_WORD num_faults_since_clear;

 T_WORD num_faults_in_queue;

 T_WORD num_faults_read;

 union{

 struct PLC_fault_entry_rec
PLC_faults[NUM_LEGACY_PLC_FAULT_ENTRIES];

 struct IO_fault_entry_rec
IO_faults[NUM_LEGACY_IO_FAULT_ENTRIES];

 } faultEntry;

};

A-14 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library Fault Table Functions,
 Structures and Constants

Series 90 PLC Library Compatibility Notes & Issues

T_INT32 PLCC_read_last_ext_fault(struct read_last_ext_fault_rec *x);

/* Read Last-Logged Extended Fault Table Entry . */

struct PLC_ext_fault_entry_rec{

 T_BYTE long_short;

 T_BYTE reserved[3];

 struct PLC_flt_address_rec PLC_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_WORD error_code;

 T_WORD fault_specific_data[12];

 struct ext_time_stamp_rec time_stamp;

};

struct IO_ext_fault_entry_rec{

 T_BYTE long_short;

 struct reference_address_rec reference_address;

 struct IO_flt_address_rec IO_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_BYTE fault_category;

 T_BYTE fault_type;

 T_BYTE fault_description;

 T_BYTE fault_specific_data[21];

 struct ext_time_stamp_rec time_stamp;

};

struct read_last_ext_fault_rec {

 T_WORD table; /* PLC_EXT_FAULT_TABLE or IO_EXT_FAULT_TABLE
*/

 union {

 struct PLC_ext_fault_entry_rec PLC_entry;

 struct IO_ext_fault_entry_rec IO_entry;

 };

};

#define PLC_EXT_FAULT_TABLE 0x80

#define IO_EXT_FAULT_TABLE 0x81

This function is not described in the Series 90 C Toolkit Users Manual
but is included in the 90-70/90-30 C Toolkit header files. This function is
included in the PACSystems C Toolkit for compatibility.

GFK-2259E Appendix A Target Library Functions A-15

A

Target Library Fault Table Functions,
 Structures and Constants

Series 90 PLC Library Compatibility Notes & Issues

T_INT32 PLCC_read_last_fault(struct read_last_fault_rec *x);

/* Read Last-Logged Fault Table Entry. */

struct time_stamp_rec{

 T_BYTE second; /* BCD format, seconds in low-order nibble, */

 /* tens of seconds in high-order nibble. */

 T_BYTE minute; /* BCD format, same as for seconds. */

 T_BYTE hour; /* BCD format, same as for seconds. */

 T_BYTE day; /* BCD format, same as for seconds. */

 T_BYTE month; /* BCD format, same as for seconds. */

 T_BYTE year; /* BCD format, same as for seconds. */

};

struct PLC_flt_address_rec{

 T_BYTE rack;

 T_BYTE slot;

 T_WORD task;

};

struct IO_flt_address_rec{

 T_BYTE rack;

 T_BYTE slot;

 T_BYTE IO_bus;

 T_BYTE block;

 T_WORD point;

};

struct PLC_fault_entry_rec{

 T_BYTE long_short;

 T_BYTE reserved[3];

 struct PLC_flt_address_rec PLC_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_WORD error_code;

 T_WORD fault_specific_data[12];

 struct time_stamp_rec time_stamp;

};

struct IO_fault_entry_rec{

 T_BYTE long_short;

 struct reference_address_rec reference_address;

 struct IO_flt_address_rec IO_fault_address;

 T_BYTE fault_group;

 T_BYTE fault_action;

 T_BYTE fault_category;

 T_BYTE fault_type;

 T_BYTE fault_description;

 T_BYTE fault_specific_data[21];

 struct time_stamp_rec time_stamp;

 T_WORD fault_id;

};

struct read_last_fault_rec {

 T_WORD table; /* PLC_FAULT_TABLE or IO_FAULT_TABLE */

 union {

 struct PLC_fault_entry_rec PLC_entry;

 struct IO_fault_entry_rec IO_entry;

 };

};

Compatible with 90-70 and 90-30.

A-16 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library Fault Table Functions,
 Structures and Constants

Series 90 PLC Library Compatibility Notes & Issues

 T_INT32 PLCC_clear_fault_tables(struct clear_fault_tables_rec *x);

/* Clear Fault Tables */

struct clear_fault_tables_rec{

 T_WORD table;

};

#define PLC_FAULT_TABLE 0

#define IO_FAULT_TABLE 1

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_read_ext_fault_tables (struct read_ext_fault_tables_rec
*x);

/* Read Extended Fault Tables */

struct read_ext_fault_tables_rec {

 T_WORD table; /* PLC_EXT_FAULT_TABLE or IO_EXT_FAULT_TABLE
*/

 T_WORD start_index;

 T_WORD number_of_entries_to_read;

 T_WORD reserved[12];

 struct time_stamp_rec time_since_clear;

 T_WORD num_faults_since_clear;

 T_WORD num_faults_in_queue;

 T_WORD num_faults_read;

 T_WORD PlcName[16]; union{

 struct PLC_ext_fault_entry_rec PLC_faults[1];

 struct IO_ext_fault_entry_rec IO_faults[1];

 } faultEntry;

};

Example: Extended fault table structure declaration with user defined
number of fault entries:

/* Constants / #defines */
#define MY_PLC_FLT_TBL_SIZE 64
#define MY_IO_FLT_TBL_SIZE 64
/* Structures and typedefs */
/* Note: this structure must be packed */
#pragma pack(1)
struct my_read_ext_fault_tables_rec
{
 T_WORD table; /* PLC_EXT_FAULT_TABLE or IO_EXT_FAULT_TABLE
*/
 T_WORD start_index;
 T_WORD number_of_entries_to_read;
 T_WORD reserved[12];
 struct time_stamp_rec time_since_clear;
 T_WORD num_faults_since_clear;
 T_WORD num_faults_in_queue;
 T_WORD num_faults_read;
 T_WORD PlcName[16];
 union
 {
 struct PLC_ext_fault_entry_rec PLC_faults[MY_PLC_FLT_TBL_SIZE];
 struct IO_ext_fault_entry_rec IO_faults[MY_IO_FLT_TBL_SIZE];
 } faultEntry;
};
#pragma pack()
/* Variable Declaration and Calling Example */

struct my_read_ext_fault_tables_rec readExtFaultTablesRec;
PLCC_read_ext_fault_tables(

 (struct read_ext_fault_tables_rec*)&readExtFaultTablesRec);

This function is not described in the Series 90 C Toolkit Users Manual
but is included in the 90-70 C Toolkit header file. This is included in the
PACSystems C Toolkit for compatibility. This function maps to service
request 20 in the PACSystems. Since the size of the extended fault
table can be variable Depending on the model of the PACSystems
CPU, you will need to create you own structure with the same members
and dimension PLC_faults and IO_faults members to the size of the
maximum number of faults you want to read. You must then declare a
variable of this type and cast it to a read_ext_fault_tables_rec when
calling this function (See Example – Note that the structure must be
packed to work properly)

Another issue is that the union must be named as required by the GNU
C compiler. Therefore, to get access to a particular fault, the following
syntax must be used:

myExtFaultRec.faultEntry.PLC_faults[0]…

GFK-2259E Appendix A Target Library Functions A-17

A

Target Library General Functions, Structures and Constants

Implemented in ctkPlcFunc.h
Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

General PLC Functions

 T_INT32 PLCC_read_elapsed_clock (struct elapsed_clock_rec *);

struct elapsed_clock_rec {

 T_DWORD seconds;

 T_WORD hundred_usecs;

};

Compatible with 90-70 and 90-30 libraries.

 T_INT32 PLCC_read_nano_elapsed_clock (struct nano_elapsed_clock_rec
*);

struct nano_elapsed_clock_rec {

 T_DWORD seconds;

 T_DWORD nanoseconds;

};

Function returns elapsed time in nanoseconds.

 T_INT32 PLCC_chars_in_printf_q (void);

/* integer value equal to number of characters currently in the printf buffer */

#define PRINTF_Q_SIZE 2048

Returns GEF_NOT_SUPPORTED since printf is not supported. The
following functions provide information on the number of characters in
the input/output queues:

PLCC_CharsInMessageWriteQ

PLCC_CharsInMessageReadQ

 T_INT32 PLCC_gen_alarm (word, char *);

/* Log a user specified application fault in the PLC fault table.*/

Compatible with the 90-70 and 90-30 libraries.

 T_INT32 PLCC_get_plc_version (struct PLC_ver_info_rec *);

/* Get the PLC family, model, and firmware version and revision.*/

struct PLC_ver_info_rec {

 T_WORD family; /* Host PLC product line */

 T_WORD model; /* Specific Model of PLC */

 T_BYTE sw_ver; /* Major Version of PLC firmware */

 T_BYTE sw_rev; /* Minor Revision of PLC firmware */

};

#define FAMILY_PACSYSTEMS 0x2002

Compatible with 90-70 and 90-30 libraries.

A-18 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

 T_INT32 PLCC_comm_req(struct comm_req_rec *x);

/* Communications Request */

struct status_addr{

 T_WORD seg_selector;

 T_WORD offset;

};

struct comm_req_command_blk_rec{

 T_WORD length;

 T_WORD wait;

 struct status_addr status;

 T_WORD idle_timeout;

 T_WORD max_comm_time;

 T_WORD data[128];

};

struct comm_req_rec{

 struct comm_req_command_blk_rec *command_blk;

 T_BYTE slot;

 T_BYTE rack;

 T_DWORD task_id;

};

Compatible with the 90-70 and 90-30 but not able to access full range
of %W memory. Use PLCC_comm_req_extended() to provide access
to the full %W address range.

T_INT32 PLCC_comm_req_extended (struct comm_req_rec *x);

/* Communications Request */

struct status_addr_extended{

 T_WORD seg_selector;

 T_DWORD offset;

};

struct comm_req_command_blk_rec{

 T_WORD length;

 T_WORD wait;

 struct status_addr_extended status;

 T_WORD idle_timeout;

 T_WORD max_comm_time;

 T_WORD data[128];

};

struct comm_req_rec_extended{

 struct comm_req_command_blk_rec_extended *command_blk;

 T_BYTE slot;

 T_BYTE rack;

 T_DWORD task_id;

}

Has the same functionality as PLCC_comm._req, except that it can
access the full address range of %W memory. Not supported by
Series 90 PLCs.

 T_INT32 PLCC_do_io(struct do_io_rec *x);

/* Do I/O */

struct do_io_rec{

 T_BYTE start_mem_type;

 T_WORD start_mem_offset;

 T_WORD length;

 T_BYTE alt_mem_type; /* must be set to NULL_SEGSEL if not used */

 T_WORD alt_mem_offset;

};

Compatible with 90-70 and 90-30 libraries.

Errnos:

TLIB_ERRNO_DOIO_INVALID_IO_REF_ER

TLIB_ERRNO_DOIO_INVALID_AUX_REF_ER

GFK-2259E Appendix A Target Library Functions A-19

A

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

 T_INT32 PLCC_do_io_ext(struct do_io_ext_rec *x);

struct do_io_ext_rec{

 T_WORD start_mem_type;

 T_DWORD start_mem_offset;

 T_DWORD length; /* Ignored if start_mem_type is PLC_VAR_MEM */

 T_WORD alt_mem_type; /* must be set to NULL_SEGSEL if not used */

 T_DWORD alt_mem_offset;

};

Not supported by Series 90.

Supported by PACSystems Release 3.5 or greater.

 The Enhanced DO_IO function (Series 90-30 only) is not supported.

 T_INT32 PLCC_sus_io(void);

/* Suspend I/O */

Compatible with the 90-70 and 90-30 library.

T_INT32 PLCC_scan_set_io(struct scan_set_io_rec *pScanSetIoRec);

struct scan_set_io_rec{

 T_BOOLEAN scan_inputs;

 T_BOOLEAN scan_outputs;

 T_UINT16 scan_set_number;

};

Not supported by Series 90.

Supported by PACSystems Release 5.0 or greater.

 T_INT32 PLCC_SNP_ID(T_BYTE request_type, char *id_str_ptr);

/* Read or Write SNP ID */

#define READ_ID 0

#define WRITE_ID 1

Compatible with 90-70 and 90-30 libraries (Release 2.0 and later).

 T_INT32 PLCC_read_override(T_BYTE tbl_typ, T_WORD ref_num,
T_WORD len, T_BYTE *data);

/* Error return values */

#define BAD_MEMORY_TYPE -2

#define OFFSET_NOT_BYTE_ALIGNED –3

#define READING_OUTSIDE_REF_MEM –4

#define BAD_DATA_POINTER -5

/* Read Overrides */

#define I_OVR 0

#define Q_OVR 1

#define M_OVR 2

#define G_OVR 3

The following 90-70 and 90-30 values are not supported by
PACSystems:

#define GA_OVR 4

#define GB_OVR 5

#define GC_OVR 6

#define GD_OVR 7

#define GE_OVR 8

 int far PLCCinvokeldblock(void); (not supported)

T_INT32 PLCC_MessageWrite(T_INT32 port, char *buffer, T_INT32
numBytes);

#define PORT1 0
#define PORT2 1

New function to provide serial output.

Note: for all PLCC_Message* functions, the Hardware configuration
for the serial port must be setup for Message Mode for the function to
access the serial port.

Errnos:

TLIB_ERRNO_MSG_INVALID_PORT

TLIB_ERRNO_MSG_NOT_CONFIGURED

TLIB_ERRNO_MSG_INVALID_LENGTH

T_INT32 PLCC_MessageRead(T_INT32 port, char *buffer, T_INT32
numBytes);

New function to provide serial input.

Errnos:

TLIB_ERRNO_MSG_INVALID_PORT

TLIB_ERRNO_MSG_NOT_CONFIGURED

TLIB_ERRNO_MSG_INVALID_LENGTH

A-20 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

T_INT32 PLCC_CharsInMessageWriteQ(T_INT32 port);

New function that Returns the number of bytes in the write queue.

Errnos:

TLIB_ERRNO_MSG_INVALID_PORT

TLIB_ERRNO_MSG_NOT_CONFIGURED

T_INT32 PLCC_CharsInMessageRead(T_INT32 port, char *buffer, T_INT32
numBytes);

New function that returns the number of bytes in the read queue

Errnos:

TLIB_ERRNO_MSG_INVALID_PORT

TLIB_ERRNO_MSG_NOT_CONFIGURED

Functions based on service requests from the SVCREQ function block

 T_INT32 PLCC_const_sweep_timer(struct const_sweep_timer_rec *x);

/* Change/Read Constant Sweep Timer.*/

struct const_sweep_input_rec {

 T_WORD action;

 T_WORD timer_value;

};

/* structure with return values */

struct const_sweep_output_rec {

 T_WORD sweep_mode;

 T_WORD current_time_value;

};

struct const_sweep_timer_rec {

 union {

 struct const_sweep_input_rec input;

 struct const_sweep_output_rec output;

 };

};

/* action values */

#define DISABLE_CONSTANT_SWEEP_MODE 0

#define ENABLE_CONSTANT_SWEEP_MODE 1

#define CHANGE_TIMER_VALUE 2

#define READ_TIMER_VALUE_AND_STATE 3

/* sweep mode return values */

#define CONSTANT_SWEEP_ENABLED 1

#define CONSTANT_SWEEP_DISABLED 0

Compatible with 90-70 and 90-30 except that Microcycle (90-70) is
not supported.

GFK-2259E Appendix A Target Library Functions A-21

A

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

 T_INT32 PLCC_read_window_values(struct read_window_values_rec *x);

/* Read Window Values.*/

/* window modes */

#define LIMITED_MODE 0

#define CONSTANT_MODE 1

#define RUN_TO_COMPLETION_MODE 2

/* structure with return values */

struct read_window_values_rec{

 T_BYTE controller_win_time;

 T_BYTE controller_win_mode; /* LIMITED_MODE, CONSTANT_MODE,
*/

 /* RUN_TO_COMPLETION_MODE */

 T_BYTE backplane_comm_win_time;

 T_BYTE backplane_comm_win_mode; /* LIMITED_MODE,
CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE
*/

 T_BYTE background_win_time;

 T_BYTE background_win_mode; /* LIMITED_MODE,
CONSTANT_MODE, */

 /*
RUN_TO_COMPLETION_MODE */

};

Compatible with the 90-70 and 90-30 except that structure member
names with the “prog_” suffix now use the “controller_” suffix and
those that use the “sys_” suffix now use the “backplane_” suffix. This
is to make the names consistent with the PACSystems terminology.

T_INT32 PLCC_change_controller_comm_window (struct
change_controller_comm_window_rec *x);

/* Change Controller Communications Window State and Values */

/* input structure */

struct change_controller_comm_window_rec{

 T_BYTE time;

 T_BYTE mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE */

};

/* window modes */

#define LIMITED_MODE 0

#define CONSTANT_MODE 1

#define RUN_TO_COMPLETION_MODE 2

Compatible with the 90-70 and 90-30, except that function and
structure names containing “prog_” now use the “controller_”. This
makes the names consistent with the PACSystems terminology.

 T_INT32 PLCC_change_backplane_comm_window (struct
change_backplane_comm_window_rec *x);

/* Change Backplane Communications Window State and Values*/

struct change_system_comm_window_rec{

 T_BYTE time;

 T_BYTE mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE */

};

Compatible with the 90-70 and 90-30, except that function and
structure names containing “system_” now use the “backplane_”
This makes the names consistent with the PACSystems terminology.

 T_INT32 PLCC_change_background_window (struct
change_background_window_rec *x);

/* Change Background Window State and Values. */

struct change_background_window_rec{

 T_BYTE time;

 T_BYTE mode; /* LIMITED_MODE, CONSTANT_MODE, */

 /* RUN_TO_COMPLETION_MODE */

};

Compatible with 90-70 and 90-30 libraries.

A-22 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

 T_INT32 PLCC_number_of_words_in_chksm(struct
number_of_words_in_chksm_rec *x);

/* Set/Read Number of Words to Checksummed */

struct number_of_words_in_chksm_rec{

 T_WORD read_set;

 T_WORD word_count; /* number of words checksummed */

};

#define READ_CHECKSUM_WORDS 0

#define SET_CHECKSUM_WORDS 1

Compatible with 90-70 and 90-30 libraries.

 T_INT32 PLCC_tod_clock(struct tod_clock_rec *x);

/*Change/Read Time-of-Day Clock State and Values */

#define NUMERIC_DATA_FORMAT 0

#define BCD_FORMAT 1

#define UNPACKED_BCD_FORMAT 2

#define PACKED_ASCII_FORMAT 3

#define POSIX_FORMAT 4

#define NUMERIC_DATA_FORMAT_4_DIG_YR 0x80
#define BCD_FORMAT_4_DIG_YR 0x81
#define UNPACKED_BCD_FORMAT_4_DIG_YR 0x82
#define PACKED_ASCII_FORMAT_4_DIG_YR 0x83

#define SUNDAY 1

#define MONDAY 2

#define TUESDAY 3

#define WEDNESDAY 4

#define THURSDAY 5

#define FRIDAY 6

#define SATURDAY 7

struct num_tod_rec{

 T_WORD year;

 T_WORD month;

 T_WORD day_of_month;

 T_WORD hours;

 T_WORD minutes;

 T_WORD seconds;

 T_WORD day_of_week;

};

struct BCD_tod_rec{

 T_BYTE year;

 T_BYTE month;

 T_BYTE day_of_month;

 T_BYTE hours;

 T_BYTE minutes;

 T_BYTE seconds;

 T_BYTE day_of_week;

 T_BYTE null;

};

struct BCD_tod_4_rec{
 T_BYTE year_lo;
 T_BYTE year_hi;
 T_BYTE month;
 T_BYTE day_of_month;
 T_BYTE hours;
 T_BYTE minutes;
 T_BYTE seconds;
 T_BYTE day_of_week;
};

Compatible with 90-70 and 90-30 libraries. Some additional formats
at available on PACSystems such as BCD_tod_4_rec,
unpacked_bcd_tod_4_rec and ascii_tod_4_rec.

GFK-2259E Appendix A Target Library Functions A-23

A

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

struct unpacked_BCD_rec{

 T_BYTE yearlo;

 T_BYTE yearhi;

 T_BYTE monthlo;

 T_BYTE monthhi;

 T_BYTE day_of_month_lo;

 T_BYTE day_of_month_hi;

 T_BYTE hourslo;

 T_BYTE hourshi;

 T_BYTE minslo;

 T_BYTE minshi;

 T_BYTE secslo;

 T_BYTE secshi;

 T_WORD day_of_week;

};

struct unpacked_bcd_tod_4_rec{
 T_WORD huns_year;
 T_WORD tens_year;
 T_WORD month;
 T_WORD day_of_month;
 T_WORD hours;
 T_WORD minutes;
 T_WORD seconds;
 T_WORD day_of_week;
};

struct ASCII_tod_rec{

 T_BYTE yearhi;

 T_BYTE yearlo;

 T_BYTE space1;

 T_BYTE monthhi;

 T_BYTE monthlo;

 T_BYTE space2;

 T_BYTE day_of_month_hi;

 T_BYTE day_of_month_lo;

 T_BYTE space3;

 T_BYTE hourshi;

 T_BYTE hourslo;

 T_BYTE colon1;

 T_BYTE minshi;

 T_BYTE minslo;

 T_BYTE colon2;

 T_BYTE secshi;

 T_BYTE secslo;

 T_BYTE space4;

 T_BYTE day_of_week_hi;

 T_BYTE day_of_week_lo;

};

struct ascii_tod_4_rec{
 T_BYTE hun_year_hi;
 T_BYTE hun_year_lo;
 T_BYTE year_hi;
 T_BYTE year_lo;
 T_BYTE space1;
 T_BYTE month_hi;
 T_BYTE month_lo;
 T_BYTE space2;
 T_BYTE day_of_month_hi;
 T_BYTE day_of_month_lo;
 T_BYTE space3;
 T_BYTE hours_hi;

The union must be named as required by the GNU C compiler.
Therefore, to get access to a particular member in the "record" union
of the tod_clock_rec structure , the following syntax must be used:

 todClockRec.record.num_tod.seconds

A-24 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

 T_BYTE hours_lo;
 T_BYTE colon1;
 T_BYTE minutes_hi;
 T_BYTE minutes_lo;
 T_BYTE colon2;
 T_BYTE seconds_hi;
 T_BYTE seconds_lo;
 T_BYTE space4;
 T_BYTE day_of_week_hi;
 T_BYTE day_of_week_lo;
};

#define READ_CLOCK 0

#define WRITE_CLOCK 1

typedef long int time_t;

struct timespec {

 time_t tv_sec;

 long int tv_nsec;

};

struct tod_clock_rec{

 T_WORD read_write; /* READ_CLOCK or WRITE_CLOCK */

 T_WORD format; /* NUMERIC_DATA_FORMAT, BCD_FORMAT */

 /* UNPACKED_BCD_FORMAT, PACKED_ASCII_FORMAT
*/

 union {

 struct num_tod_rec num_tod;

 struct BCD_tod_rec BCD_tod;

 struct BCD_tod_4_rec BCD_tod_4;

 struct unpacked_BCD_rec unpacked_BCD_tod;

 struct unpacked_bcd_tod_4_rec unpacked_BCD_tod_4;

 struct ASCII_tod_rec ASCII_tod;

 struct ascii_tod_4_rec ASCII_tod_4;

 struct timespec POSIX_tod;

 };

};

 T_INT32 PLCC_tod_clock_with_status(struct
tod_clock_with_status_rec *x);Not Supported.

 T_INT32 PLCC_reset_watchdog_timer(void);

/* Reset Watchdog Timer */

Compatible with 90-70 and 90-30 libraries.

 T_int32 PLCC_time_since_start_of_sweep(struct
time_since_start_of_sweep_rec *x);

/* Read Sweep Time from the Beginning of Sweep */

struct time_since_start_of_sweep_rec{

 T_WORD time_since_start_of_sweep;

};

Compatible with 90-70 and 90-30 libraries.

 T_INT32 PLCC_nano_time_since_start_of_sweep(struct
nano_time_since_start_of_sweep_rec *x);

/* Read Sweep Time in nanoseconds from the Beginning of Sweep */

struct nano_time_since_start_of_sweep_rec{

 T_DWORD time_since_start_of_sweep;

};

New function. Provides time in nanosecond units.

 T_INT32 PLCC_read_folder_name(struct read_folder_name_rec *x);

/* Read Folder Name */

struct read_folder_name_rec{

 char folder_name[32]; /* NULL terminated */

};

Change in number of characters in name to 32 including the NULL
terminator.

GFK-2259E Appendix A Target Library Functions A-25

A

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

 T_INT32 PLCC_read_PLC_ID(struct read_PLC_ID_rec *x);

/* Read PLC ID */

struct read_PLC_ID_rec{

 char PLC_ID[8]; /* NULL terminated */

};

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_read_PLC_state(struct read_PLC_state_rec *x);

/* Read PLC Run State */

#define RUN_DISABLED 1

#define RUN_ENABLED 2

struct read_PLC_state_rec{

 T_WORD state;

};

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_shut_down_plc(T_WORD numberOfSweeps);

/* Shut Down PLC */

Compatible with the 90-70 and 90-30 except the function takes an
input parameter, number of sweeps, that indicates the number of full
sweeps to execute after the function is called.

 T_INT32 PLCC_mask_IO_interrupts(struct mask_IO_interrupts_rec *x);

/* Mask/Unmask I/O Interrupt */

struct mask_IO_interrupts_rec{

 T_WORD mask; /* MASK or UNMASK */

 T_WORD memory_type;

 T_WORD memory_address;

};

#define MASK 1

#define UNMASK 0

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_mask_IO_interrupts_ext (struct
mask_IO_interrupts_ext_rec *x);

struct mask_IO_interrupts_ext_rec{

 T_WORD action; /* MASK or UNMASK */

 T_WORD memory_type; /* Address of input interrupt trigger */

 T_DWORD memory_offset;

};

Not supported by Series 90.

Supported by PACSystems Release 3.5 or greater.

 T_INT32 PLCC_read_IO_override_status(struct
read_IO_override_status_rec *x);

/* Read I/O Override Status */

struct read_IO_override_status_rec{

 T_WORD override_set;

};

#define OVERRIDES_SET 1

#define NO_OVERRIDES_SET 0

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_set_run_enable(struct set_run_enable_rec *x);

/* Set Run Enable/Disable */

#define RUN_DISABLED 1

#define RUN_ENABLED 2

struct set_run_enable_rec{

 T_WORD enable;

};

Compatible with 90-70.

A-26 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library General Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

 T_INT32 PLCC_mask_timed_interrupts(struct mask_timed_interrupts_rec
*x);

/* Mask/Unmask Timed Interrupts */

struct mask_timed_interrupts_rec{
 T_WORD action; /* READ_INTERRUPT_MASK or
WRITE_INTERRUPT_MASK */
 T_WORD status; /* if action is READ_INTERRUPT_MASK then this */
 /* field has MASK or UNMASK as the return value
*/
 /* if the action is WRITE_INTERRUPT_MASK then
*/
 /* set this field to MASK or UNMASK */
};

;

#define READ_INTERRUPT_MASK 0

#define WRITE_INTERRUPT_MASK 1

Compatible with 90-70 and 90-30.

 T_INT32 PLCC_sus_res_HSC_interrupts(struct
sus_res_HSC_interrupts_rec *x);

/* Suspend/Resume High Speed Counter Interrupts */

#define SUSPEND 1

#define RESUME 0

#define I_BIT 70

#define AI_MEM 10

struct sus_res_HSC_interrupts_rec{

 T_WORD action; /* SUSPEND or RESUME */

 T_WORD memory_type;

 T_WORD reference_address;

};

Compatible with 90-70 and 90-30.

T_INT32 PLCC_sus_res_interrupts_ext(struct sus_res_interrupts_ext_rec
*x);

struct sus_res_interrupts_ext_rec{

 T_WORD action; /* SUSPEND or RESUME */

 T_WORD memory_type; /* Address of the interrupt trigger */

 T_DWORD memory_offset;

};

Not supported by Series 90.

Supported by PACSystems Release 3.5 or greater.

 int PLCC_acc_mem (struct plcc_mem_acc_rec *mem_acc_rec_ptr);

Not Supported since bulk memory is supported directly through %W
memory type.

T_INT32 PLCC_get_escm_status (struct escm_status_rec *);

/* Function PLCC_get_escm_status */

struct escm_status_rec {

 T_WORD port_number;

 T_WORD port_status;

};

Compatible with 90-70 except the function will always return 0 (escm
not available or unsupported) for this release of PACSystems
because the ESCM is not present.

T_INT32 PLCC_set_application_redundancy_mode(T_WORD mode);

/* Possible values for the backup mode. */

#define BACKUP_MODE 0

#define ACTIVE_MODE 1

Not supported by Series 90.

Supported by PACSystems Release 5.0 or greater.

GFK-2259E Appendix A Target Library Functions A-27

A

Target Library VME Functions, Structures and Constants

Implemented in ctkPlcBus.h – Compatible with Rx7 only
Target Library VME Functions, Structures and Constants 90-70 PLC Library Compatibility Notes & Issues

 byte PLCC_VME_set_amcode(byte amcode) function is not
supported since the PACSystems system uses rack, slot, sub-slot,
region to address VME memory.

T_INT32 PLCC_BUS_read_byte(T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_BYTE *value, T_DWORD
address);

/* Read a byte from the VME bus.*/

Similar function as the 90-70 but the function now has four additional
input parameters, rack, slot, sub-slot and region, that specify the VME
memory access. In addition, the functions now have a status
parameter and the name uses “BUS” instead of “VME” to make the
function more general (i.e. the same code could be used on various
PACSystems CPUs)

T_INT32 PLCC_BUS_read_word(T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_WORD *value, T_DWORD
address);

/* Read a word from the VME bus.*/

T_INT32 PLCC_BUS_read_block(T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, void *buffer, T_WORD length,
T_DWORD address);

/* Read a block from the VME bus*/

T_INT32 PLCC_BUS_write_byte(T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_BYTE value, T_DWORD
address);

/* Write a byte to the VME bus*/

T_INT32 PLCC_BUS_write_word(T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_WORD value, T_DWORD
address);

/* Write a word to the VME bus.*/

T_INT32 PLCC_BUS_write_block(T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, void *buffer, T_WORD length,
T_DWORD address);

/* Write a block of data to the VME bus*/

word PLCC_VME_config_read(void *buffer, word length, byte rack,
byte slot, unsigned long offset); Not supported.

word PLCC_VME_config_write(void *buffer, word length, byte rack,
byte slot, unsigned long offset); Not supported.

T_INT32 PLCC_BUS_RMW_byte (T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_DWORD *pOriginalValue,
T_BYTE op_type, T_BYTE mask, T_DWORD address);

/* Read Modify Write a byte to the VME bus */

#define BUS_OR 1

#define BUS_AND 0

Similar function as the 90-70 but the function now has four additional
input parameters, rack, slot, sub-slot and region, that specify the VME
memory access. In addition, the functions now have a status
parameter and the name uses “BUS” instead of “VME” to make the
function more general (i.e. the same code could be used on various
PACSystems CPUs)

 T_INT32 PLCC_BUS_RMW_word (T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_DWORD *pOriginalValue,
T_BYTE op_type, T_WORD mask, T_DWORD address);

/* Read Modify Write a word to the VME bus */

#define BUS_OR 1

#define BUS_AND 0

T_INT32 PLCC_BUS_TST_byte (T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_BYTE *semaphore_output,
T_DWORD address);

/* Test and set a byte on the VME bus*/

T_INT32 PLCC_BUS_TST_word (T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_WORD
*semaphore_output, T_DWORD address);

/* Test and set a word on the VME bus*/

T_INT32 PLCC_BUS_read_dword(T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_DWORD *value,
T_DWORD address);

/* Read a dword from the VME bus.*/

New Bus function for 32 bit access

A-28 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

A

Target Library VME Functions, Structures and Constants 90-70 PLC Library Compatibility Notes & Issues

T_INT32 PLCC_BUS_write_dword(T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_DWORD value, T_DWORD
address);

/* Write a dword to the VME bus*/

New Bus function for 32 bit access

T_INT32 PLCC_BUS_RMW_dword(T_WORD rack, T_WORD slot, T_WORD
subSlot, T_WORD region, T_WORD *pStatus, T_DWORD *pOriginalValue,
T_BYTE op_type, T_DWORD mask, T_DWORD address);

/* Read Modify Write a dword to the VME bus */

#define BUS_OR 1

#define BUS_AND 0

New Bus function for 32 bit access

Target Library Error Functions, Structures and Constants

Implemented in ctkPlcErrno.h
Target Library Error Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

void PLCC_ClearErrno(void); This is a new function. It clears the errno in the current
context. As a general rule, this function should be called just
before calling a function whose status will be checked by
using PLCC_GetErrno. If this is not done, the Errno value
could be the result of previous function call.

int PLCC_GetErrno(void) This is a new function. It returns the errno in the current
context. errno contains the error code set by the last Target
Library or C Run Time Library function to declare an error.

Target Library Utility Functions, Structures and Constants

Implemented in ctkPlcUtil.h
Target Library Utility Functions, Structures and Constants Series 90 PLC Library Compatibility Notes & Issues

T_WORD PLCC_Crc16Checksum(T_BYTE *pFirstByte,

 T_DWORD length,

 T_WORD currentCrcValue);

This is a new function. It calculates a CRC16 checksum over
the given area with the given starting value and length in
bytes. The currentCrcValue is normally 0. When checking a
large memory range section by section, one can use the
previous section's CRC value as the initial value.

Errnos:

TLIB_ERRNO_UTIL_NULL_POINTER

GFK-2259E B-1

C Run-Time Library Functions

The library functions listed in this appendix do not set errno, unless otherwise

indicated.

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include <stdio.h> Input/Output:

The Series 90-70 function, printf() is not
supported on the target and will return
GEF_ERROR. The following lines provide
equivalent printf functionality:

char buffer[100];
T_INT32 numBytes;

numBytes=sprintf(buffer, "my Message\r\n");
PLCC_MessageWrite(PORT1, buffer,
numBytes);

When debugging on the PC, printf is
supported or you can use the sprintf/
PLCC_MessageWrite combination shown
above.

#include <stdio.h> int sprintf(char*, const char* format,
...);

#include <stdio.h> int sscanf (const char* string, const
char* format, ...);

New function to PACSystems; i.e. it was not
supported on Series 90 PLCs.

B
Appendix

B-2 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

B

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include <math.h> Math: Note for the following Math functions:

+-NAN is 0x7ff8000000000000 &
0xfff8000000000000 respectively for a double
value.

+-Infinity is 0x7ff0000000000000 and
0xfff0000000000000 respectively for a double
value.

+-NAN is 0x7f8xxxxx and 0xff8xxxxx
respectively where xxxxx is non-zero for a
float value.

+-Infinity is 0x7f800000 and 0xff800000
respectively for a float value.

#include <math.h> double acos(double); (64 bit),

float acosf(float); (32 bit)

acos() (32 bit) on the 90-70 is functionally
equivalent to acosf() on PACSystems.

acosl() (80 bits) is not supported.

Similar compatibility issues exist for the other
math functions.

Errno exception: EDOM is not set by this
function and returns “not a number” +-NAN if
outside the range of –1 to 1

#include <math.h> double asin(double),

float asinf(float) ;

asinl() is not supported

Errno exception: EDOM is not set by this
function and returns “not a number” +-NAN if
outside the range of –1 to 1

#include <math.h> double atan(double),

float atanf(float);

atanl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

NA _cabs() is not supported.

NA _cabsl() is not supported.

#include <math.h> double ceil(double),

float ceilf(float);

ceill() is not supported

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns +-Infinity
respectively.

#include <math.h> double cos(double),

float cosf(float);

cosl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns –NAN.

#include <math.h> double cosh(double),

float coshf(float);

coshl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns +NAN.

GFK-2259E Appendix B C Run-Time Library Functions B-3

B

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include <math.h> double exp(double),

float expf(float);

expl() is not supported.

Errno exceptions: ERANGE or EDOM are not
set by this function and the functions returns
+NAN when the input is +Infinity or +-NAN.
The function returns +Infinity if the input is -
Infinity.

#include <math.h> double fabs(double),

float fabsf(float);

fabsl() is not supported.

Errno & return exceptions:

EDOM and ERANGE are not set.

A +- Infinity input returns a +Infinity value.

A +- NAN input returns a +NAN value.

#include <math.h> double floor(double),

float floorf(float);

floorl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns +-Infinity
respectively.

#include <math.h> double fmod(double x , double y),

float fmodf(float x, float y);

fmodl() is not supported.

Errno & return value exceptions:

EDOM is not set.

If y = 0, the return value is +NAN.

#include <math.h> double frexp(double x, int *y) ; frexpl() is not supported

Errno: sets EDOM for x = +-NAN or +-Infinity.

NA _hypot is not supported .(calculates the
hypotenuse).

NA _hypotl is not supported.

#include <math.h> double ldexp(double x, int y); ldexpl is not supported.

Errno: set errno to EDOM for x +-NAN and
ERANGE for x +-Infinity.

Caution: setting y > 65535 could cause the
PLC watchdog to time out.

#include <math.h> double log(double x),

float logf(float x);

logl() is not supported.

Errno and return exceptions:

EDOM is not set for a negative input.
ERANGE is not set for an input of 0.

x < 0 returns –NAN

x=+Infinity returns +Infinity

x=0 returns –Infinity

x=+-NAN returns +-NAN respectively.

#include <math.h> double log10(double x),

float log10f(float x);

log10l() is not supported

Errno and return exceptions:

EDOM is not set for a negative input.
ERANGE is not set for an input of 0.

x < 0 returns –NAN

x=+Infinity returns +Infinity

x=0 returns –Infinity

x=+-NAN returns +-NAN respectively.

B-4 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

B

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include <math.h> double modf(double, double *) modfl() is not supported.

#include <math.h> double pow(double x, double y),

float powf(float x, float y);

powl() is not supported.

Errno & return exceptions:

When x=0 and y=0, EDOM is not set and the
return value is 1.0

When x=0 and y<0, EDOM is not set and the
return value is Positive Infinity

When x<0 and y is non-integer, EDOM is not
set and the functions returns 0.

#include <math.h> double sin(double),

float sinf(float);

sinl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns –NAN.

#include <math.h> double sinh(double),

float sinhf(float);

sinhl() is not supported.

Function does not set errno.

For +-NAN input returns +-NAN respectively.

For +-Infinity input returns +-Infinity
respectively.

#include <math.h> double sqrt(double x),

float sqrtf(float x);

sqrtl() is not supported.

Errno & return exceptions:

EDOM is not set for the following conditions.

When x<0, the return value is –NAN.

When x = +Infinity, the return value is +Infinity
respectively.

When x = +-NAN, the return value is +-NAN.

#include <math.h> double tan(double x),

float tanf(float x);

tanl() is not supported.

Errno is not set by this function.

Return exceptions:

When x = +-NAN, the return value is +-NAN
respectively.

When x = +-Infinitiy, the return value is –NAN.

#include <math.h> double tanh(double x),

float tanhf(float x);

tanhl() is not supported.

Errno is not set by this function.

Return exceptions:

When x = +-NAN, the return value is +-NAN
respectively.

GFK-2259E Appendix B C Run-Time Library Functions B-5

B

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include <stdlib.h> Math:

void div_r(

 int numerator,

 int denominator,

 div_t * divStructPtr

)

typedef struct {

 int quot;

 int rem;

} div_t

div() is not supported because it is not re-
entrant.

Description: This routine computes the
quotient and remainder of numer/denom. The
quotient and remainder are stored in the div_t
structure pointed to by divStructPtr.

This function does not set errno.

Denominator = 0 will cause a divide by 0 fault
and put the CPU into CPU Halted mode.

#include <stdlib.h> ldiv() is not supported because it is not re-
entrant.

NA _lrotl, _lrotr are not supported (long rotate left
and right respectively).

#include <ctkGefCLib.h> max(a,b), min(a,b) max(), min() macros are supported in the
GefCLib library via macros in the header file.
max() returns the greater of two numbers and
min() returns the smaller of two numbers.

These macros do not set errno.

#include <stdlib.h> int rand(void) This function does not set errno.

NA _rotl, _rotr are not supported (int rotate left
and right respectively).

#include <stdlib.h> void srand(unsigned int seed)) This function does not set errno.

#include <stdlib.h> Data Conversion:

int abs(int)

This function does not set errno.

Return exceptions:

For an input value of –2147483648, the return
value is –2147483648.

#include <stdlib.h> double atof(const char *) Sets errno if the input cannot be represented
as a 64 bit floating point number. (For ex.
numbers significantly outside +-1.79e308
range.

Note: numbers just beyond this range will
return +-Infinity but will not set errno)

#include <stdlib.h> int atoi(const char *) Sets errno if the input cannot be represented
as a 32 bit signed integer. (For example,
numbers outside -2147483648 to
+2147483647 range)

#include <stdlib.h> long atol(const char *) Sets errno if the input cannot be represented
as a 32 bit signed integer. (For example,
numbers outside -2147483648 to
+2147483647 range)

NA _itoa() (Convert an integer to a string) is not
supported.

#include <stdlib.h> long labs(long) This function does not set errno.

NA _ltoa() (Convert a long integer to a string) is
not supported.

B-6 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

B

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include <stdlib.h> long strtol(const char *, char **
endptr, int base)

Sets errno if the input cannot be represented
as a 32 bit signed integer. (For example,
numbers outside -2147483648 to
+2147483647 range).

#include <stdlib.h> unsigned long strtoul(const char *,
char ** endptr, int base)

Sets errno if the input cannot be represented
as a 32 bit unsigned integer. (For example,
numbers outside -0 to 4294967295 range)

NA _ultoaConvert an unsigned long integer to
a string) is not supported

#include <stdlib.h> Search:

void *bsearch(const void *key,
const void * base,

size_t nmemb,

size_t size,

 int (* compar)

 (const void *, const void *))

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <stdlib.h> qsort(void * base,

size_t nmemb,

size_t size,

int(*_compar)(const void *, const void
*))

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

NA Search:

_lfind() (Performs a linear search for the
specified key). Not supported.

NA _lsearchPerforms a linear search for a
value; adds to end of list if not found). Not
supported.

#include <string.h> String Manipulation:

char *strcat(char *, const char *)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> char *strchr(const char *, int) This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> int strcmp(const char *, const char *) This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> char *strcpy(char *, const char *) This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> size_t strcspn(const char *, const
char *)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

GFK-2259E Appendix B C Run-Time Library Functions B-7

B

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include <string.h> char *strerror_r(

 int errorcode,

 char *stringBuffer

)

strerror() and _strerror() are not supported
since they are not re-entrant

Description: This routine maps the error
number in errcode to an error message string.
It stores the error string in buffer. The function
returns GEF_OK or GEF_ERROR.
GEF_ERROR is returned if a NULL pointer is
passed as the input for stringBuffer.

Errno is not set.

NA _stricmp() (Perform a lowercase comparison
of strings) is not supported.

#include <string.h> size_t strlen(const char *) This function does not set errno.

Note: NULL or invalid input pointer to this
function will put the CPU into CPU Halted
mode.

NA _strlwr() (Convert a string to lowercase) is not
supported.

#include <string.h> char *strncat(char *, const char *,
size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> int strncmp(const char *, const char
*, size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> char *strncpy(char *, const char *,
size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

NA _strnicmp() (Compare characters of two
strings without regard to case) is not
supported.

NA _strnset() (Initialize characters of a string to a
given format.) is not supported.

#include <string.h> char *strpbrk(const char *, const char
*)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> char *strrchr(const char *, int) This function does not set errno.

Note: NULL or invalid input pointer to this
function will put the CPU into CPU Halted
mode.

NA _strrev() (Reverse characters of a string) is
not supported.

NA _strset() (Set characters of a string to a
character) is not supported.

B-8 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

B

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include <string.h> size_t strspn(const char *, const char
*)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> char *strstr(const char *, const char
*)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> char *strtok_r(

 char * string,

 const char * separators,

 char ** ppLast

)

strtok() and _fstrtok() are not supported since
they are not re-entrant

Description:

This routine considers the null-terminated
string as a sequence of zero or more text
tokens separated by spans of one or more
characters from the separator string
separators. The argument ppLast points to a
user-provided pointer which in turn points to
the position within string at which scanning
should begin.

In the first call to this routine, string points to a
null-terminated string; separators points to a
null-terminated string of separator characters;
and ppLast points to a NULL pointer. The
function returns a pointer to the first character
of the first token, writes a null character into
string immediately following the returned
token, and updates the pointer to which
ppLast points so that it points to the first
character following the null written into string.
(Note that because the separator character is
overwritten by a null character, the input string
is modified as a result of this call.)

In subsequent calls string must be a NULL
pointer and ppLast must be unchanged so
that subsequent calls will move through the
string, returning successive tokens until no
tokens remain. The separator string
separators may be different from call to call.
When no token remains in string, a NULL
pointer is returned. This function returns a
pointer to the first character of a token, or a
NULL pointer if there is no token.

NA _strupr() (Converts any lowercase characters
in the specified string to uppercase) is not
supported.

GFK-2259E Appendix B C Run-Time Library Functions B-9

B

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include < PLCC9070.h> _fstrcat() _fstrchr() _fstrcmp()
_fstrcpy() _fstrcspn() _fstrlen
_fstrncat() _fstrncmp()
_fstrncpy()_fstrpbrk()
_fstrrchr()_fstrspn() _fstrstr()

_fstrcat() _fstrchr() _fstrcmp() _fstrcpy()
_fstrcspn() _fstrlen _fstrncat() _fstrncmp()
_fstrncpy()_fstrpbrk() _fstrrchr()_fstrspn()
_fstrstr()

These functions are far pointer versions of
functions without the “_f” prefix. Since far
pointer versions are not needed for a 32 bit
architecture, PLCC9070.h equates these
functions to the primary functions with the
following type of statement:

#define _fstrcat strcat

#include < PLCC9030.h> _fstrcat() _fstrchr() _fstrcmp()

_fstrcpy() _fstrcspn() _fstrlen()

_fstrncat() _fstrncmp() _fstrncpy()

_fstrpbrk() _fstrrchr() _fstrspn()

_fstrstr() _fmemchr() _fmemcmp()

_fmemcpy() _fmemmove()

_fmemset()

These functions are far pointer versions of
functions without the “_f” prefix. Since far
pointer versions are not needed for a 32 bit
architecture, PLCC9030.h equates these
functions to the primary functions with the
following type of statement:

#define _fstrcat strcat

NA _fstricmp() _fstrlwr() _fstrnicmp() _fstrnset()
_fstrrev() _fstrset() _fstrtok _fstrupr

These functions are not supported.

#include <string.h> Buffer Manipulation:

NA

_memccpyCopies characters from a buffer)
is not supported..

#include <string.h> void *memchr(const void *, int,
size_t)

This function does not set errno.

Note: NULL or invalid input pointer to this
function will put the CPU into CPU Halted
mode.

#include <string.h> int memcmp(const void *, const void
*, size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> void * memcpy(void *, const void *,
size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

NA _memicmp() - compares characters in two
buffers (case-insensitive) - is not supported.

#include <string.h> void * memmove(void *, const void *,
size_t)

This function does not set errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <string.h> void * memset(void *, int, size_t) This function does not set errno.

Note: NULL or invalid input pointer to this
function will put the CPU into CPU Halted
mode.

B-10 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

B

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include <GefCLib.h> void _swab(char *source, char
*destination, int nbytes)

_swab() swap “nbytes” bytes from the
“source” buffer (swaps even and odd bytes)
and copies the result to the “destination”
buffer where buffers do not have to be aligned
on even byte boundaries. If ”nbytes” is not an
odd number, the function will swap nbytes+1.
Supported in GefCLib.h with the following
statement:

#define _swab uswab

This function does not return errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include < PLCC9070.h> _fmemchr, _fmemcmp, _fmemcpy,
_fmemmove, _fmemset

_fmemchr, _fmemcmp, _fmemcpy,
_fmemmove, _fmemset

These functions are far pointer versions of
functions without the “_f” prefix. Since far
pointer versions are not needed for a 32 bit
architecture, PLCC9070.h equates these
functions to the primary functions with the
following type of statement:

#define _fmemcpy memcpy

#include < PLCC9030.h> _fmemchr, _fmemcmp, _fmemcpy,
_fmemmove, _fmemset

_fmemchr, _fmemcmp, _fmemcpy,
_fmemmove, _fmemset

These functions are far pointer versions of
functions without the “_f” prefix. Since far
pointer versions are not needed for a 32 bit
architecture, PLCC9030.h equates these
functions to the primary functions with the
following type of statement:

#define _fmemcpy memcpy

NA _fmemccpy, _fmemicmp

These functions are not supported.

#include <string.h> Internationalization:

int strcoll(const char *, const char *)

This function does not return errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <time.h> Time Internationalization:

size_t strftime(char *_s, size_t
_maxsize, const char *_fmt, const
struct tm *_t)

This function does not return errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

GFK-2259E Appendix B C Run-Time Library Functions B-11

B

Include File Supported C Run-Time Library
Functions Associated with File

Series 90 C Run-Time Library
Compatibility Notes, Issues, Errno

information and return value exceptions

#include <time.h> Time:

int asctime_r(

 const struct tm * timeptr,

 char * asctimeBuf,

 size_t * buflen

)

asctime() is not supported since it is not re-
entrant

Description:

This routine converts the broken-down
time pointed to by timeptr into a string of
the form:

SUN SEP 16 01:03:52 1973\n\0

The string is copied to asctimeBuf.

This function returns the size of the
created string.

This function does not return errno.

Note: NULL or invalid input pointers to this
function will put the CPU into CPU Halted
mode.

#include <time.h> double difftime(time_t _time2, time_t
_time1)

This function does not set errno.

NA _strdate() (Copy a date to a buffer) is not
supported.

NA _strtime() (Copy the time to a buffer) is not
supported.

#include <ctype.h> Character Classification and
Conversion:

isalnum()

#include <ctype.h> int isalpha(int c)

NA isascii() is not supported.

#include <ctype.h> int iscntrl(int c)

#include <ctype.h> int isdigit(int c)

#include <ctype.h> int isgraph(int c)

#include <ctype.h> int islower(int c)

#include <ctype.h> int isprint(int c)

#include <ctype.h> int ispunct(int c)

#include <ctype.h> int isspace(int c)

#include <ctype.h> int isupper(int c)

#include <ctype.h> int isxdigit(int c)

#include <ctkGefCLib.h> int toascii(int c)

#include <ctype.h> int tolower(int c) _tolower() is not supported; use tolower()

#include <ctype.h> int toupper(int c) _toupper() is not supported use toupper().

GFK-2259E C-1

Diagnostics

This section includes descriptions of some known problems and solutions to those

problems.

Issue: Compiler issues the following warning when the EnableAnsi flag is used:

myCBlock.c:240: warning: implicit declaration of function `infinity'

myCBlock.c:263: warning: implicit declaration of function `acosf'

myCBlock.c:264: warning: implicit declaration of function `asinf'

myCBlock.c:265: warning: implicit declaration of function `atanf'

myCBlock.c:266: warning: implicit declaration of function `ceilf'

myCBlock.c:267: warning: implicit declaration of function `cosf'

myCBlock.c:268: warning: implicit declaration of function `coshf'

myCBlock.c:269: warning: implicit declaration of function `expf'

myCBlock.c:270: warning: implicit declaration of function `fabsf'

myCBlock.c:271: warning: implicit declaration of function `floorf'

myCBlock.c:272: warning: implicit declaration of function `fmodf'

myCBlock.c:273: warning: implicit declaration of function `logf'

myCBlock.c:274: warning: implicit declaration of function `log10f'

myCBlock.c:275: warning: implicit declaration of function `powf'

myCBlock.c:276: warning: implicit declaration of function `sinf'

myCBlock.c:277: warning: implicit declaration of function `sinhf'

myCBlock.c:278: warning: implicit declaration of function `sqrtf'

myCBlock.c:279: warning: implicit declaration of function `tanf'

myCBlock.c:280: warning: implicit declaration of function `tanhf'

Solution: The warnings are given because these are not supported ANSI

functions. However, if you choose, you can store the C Block to the PLC because

these functions are supported in the PLC. To get rid of the warnings, compile the

C Block without the EnableAnsi flag.

C
Appendix

C-2 C Programmer’s Toolkit for PACSystems* User’s Manual – January 2012 GFK-2259E

C

Issue: Compiler issues the following statement: warning: `HUGE_VAL’ redefined.

Solution: Place the PACRXPLC.h, PACRX3iPLc.h, or PACRX7iPlc.h include file

before math.h. This properly defines HUGE_VAL and prevents redefinition. If the

warning is ignored, the C Block may not store successfully to the PLC due to not

being able to resolve a reference used by HUGE_VAL.

Issue: Compiler issues the following error statement: undefined reference to `isascii’ when the
EnableAnsi flag is used. In addition, the C Block will not store to the PLC.

Solution: The isascii macro is not supported when compiling with ANSI checking

turned on. If the function is required, you will need to compile without the

EnableAnsi flag. The C Block will not store because there is not a isascii function

in the PLC to link with the symbol.

Issue: On some Windows 2000 PCs, the local DOS Box Environment "path" variable is not used,
resulting in the compile process failing because the path to the compiler batch file is not found.

Solution: The problem can be corrected using the following steps:

1. Press Start->Settings->Control Panel

2. Double click on System

3. Click on the "Advanced Tab"

4. Click on the "Environment Variables" button

5. In the System Variables window, scroll to the "Path" variable and click on it to

highlight it.

6. Press the Edit button.

7. Add the following text at the end of the current string

”;<PACSystemsInstallLocation>\Compilers\ElfX86;

<PACSystemsInstallLocation>\Compilers\CommonTools;

<PACSystemsInstallLocation>\Targets\PACRX\Compiler;

<PACSystemsInstallLocation>\Targets\DebugPACRX\Compiler;

<PACSystemsInstallLocation>\Targets\PACRX3i\Compiler;

<PACSystemsInstallLocation>\Targets\DebugPACRX3i\Compiler;

<PACSystemsInstallLocation>\Targets\PACRX7i\Compiler;

<PACSystemsInstallLocation>\Targets\DebugPACRX7i\Compiler;

<PACSystemsInstallLocation>\Targets\CommonFiles\CompilerCommon"

where <PACSystemsInstallLocation> is the location of the C Toolkit

installation on your machine. For example, the default installation location is:

C:\GE Software\PACSystemsCToolkit

8. Press OK three times to exit from the System Properties application

9. Reboot your PC.

Index

GFK-2259E Index-1

A
Adding blocks to the application, 3-9
Application considerations, 3-123
Application file names, 3-123
Arrays

using PLC reference memory as, 3-123

Associating a compiled C block to the
application program, 3-9

Available reference data ranges, 3-123

B
Bit macros, 3-20
Block enable output (ENO), 3-132
blockX, 3-100
Bus Read/Write functions, 3-34
BUS semaphore functions, 3-43
Byte macros, 3-21

C
C block

ladder logic ENO output, 3-132
size

in PLC, 3-134

C block structure, 3-13
C FBKs

structure, 3-135
when to use, 3-135

C function blocks
structure, 3-135
when to use, 3-135

C Macros
general, 3-18
PLC memory sizes, 3-123

C program block impact on memory, 3-134
C run-time functions, B-1
C Standalone Programs, 5-5
C Toolkit

file structure, 2-3
installing, 2-1
Running, 2-3
uninstalling, 2-4
variable types, 3-5

Calls, 3-11
clearBit, 3-98
Common errors

mismatch in parameters to GefMain(), 3-
126

Compatibility
"enum" type, 5-4
"int" type, 5-4
non-standard C library functions, 5-5

PLC target library function, 5-3
retentive variables, 5-4

Compatibility header file, 5-1
Compiling, 3-6

for specific target, 3-136
options, 3-8
specifying Toolkit version, 3-9

D
Data initialization, 3-124
Data retentiveness for C blocks, 3-125
Debugging in the PLC, 4-4
Developing a C block, 3-3
Documentation, 1-1
Double Precision/Floating Point macros, 3-

23
Double Word/Floating Point macros, 3-23

E
Entry Point, 5-5
Errno functions, 3-104
Error functions, structures and constants,

A-28

F
Fault table functions, structures and

constants, A-11
Fault table service request functions, 3-73
File names, 3-2
File structure, 2-3
Filenames, 3-123
Floating point arithmetic, 3-123
FST_EXE and FST_SCN macros, 3-133
Functions

bus read/write, 3-34
BUS semaphore, 3-43
errno, 3-104
fault table service request, 3-73
general PLC, 3-28
ladder function blocks, 3-80
miscellaneous general, 3-84
module communications, 3-79
reference memory, 3-86
service request, 3-48
utility, 3-103

G
GefMain

Parameter declaration errors for blocks, 3-
126

General functions, structures and
constants, A-17

Index

Index-2 C Programmer’s Toolkit for PACSystems* User’s Manual–January 2012 GFK-2259E

General PLC functions, 3-28
Global variables, 3-124

initialization, 3-124
PLC handling, 3-125
PLC STOP to RUN re-initialization, 3-125

H
Header files

compatibility, 5-1

I
I/O Variable Access, 3-105
Installation, 2-1
Integer/Word macros, 3-22
Interrupt blocks, 3-135
Introduction, 1-1

L
Ladder function blocks, 3-80
LST_SCN macro, 3-133

M
Macros

bit, 3-20
byte, 3-21
Double precision/floating point, 3-23
double word/floating point, 3-23
for referencing PLC memory, 3-18
integer/word, 3-22
reference memory size, 3-24
transition, alarm, and fault, 3-25

Message Mode Debugging, 4-4
Miscellaneous general functions, 3-84
Module communications, 3-79
Multiple C files

compiling, 3-7

Multiple C source files
sample, 6-2

N
Names

file, 3-2
reserved, 3-2

Non-standard C library functions, 5-5
Null pointer, 3-16

P
PACSystems environment, 3-3
PACSystems functions, 3-27
PACSystems vs Series 90, 1-1

Parameter pointer validation, 3-17
PLC

data types, 3-19
memory sizes

determining from C program. See C
Macros

reference types
%L, 3-131
%P, 3-131
%S, 3-132

PLC local registers (%P and %L), 3-131
PLC target library function

compatibility, 5-3

PLC_VAR, 3-105
'C' Types, 3-106

PLC_VAR_MEM, 3-86
PLCC_change_background_window, 3-52
PLCC_change_backplane_comm_window,

3-51
PLCC_change_controller_comm_window,

3-50
PLCC_chars_in_printf_q, 3-29
PLCC_clear_fault_tables, 3-75
PLCC_ClearErrno, 3-104
PLCC_comm_req, 3-79
PLCC_const_sweep_timer, 3-48
PLCC_Crc16Checksum, 3-103
PLCC_do_io, 3-80
PLCC_do_io_ext, 3-81
PLCC_gen_alarm, 3-32
PLCC_get_escm_status, 3-71
PLCC_get_plc_version, 3-33
PLCC_GetErrno, 3-104
PLCC_mask_IO_interrupts, 3-65
PLCC_mask_IO_interrupts_ext, 3-66
PLCC_mask_timed_interrupts, 3-68
PLCC_nano_time_since_start_of_sweep,

3-62
PLCC_number_of_words_in_chksm, 3-53
PLCC_read_elapsed_clock, 3-28
PLCC_read_ext_fault_tables, 3-78
PLCC_read_fault_tables, 3-76
PLCC_read_folder_name, 3-62
PLCC_read_IO_override_status, 3-67
PLCC_read_last_ext_fault, 3-77
PLCC_read_last_fault, 3-75
PLCC_read_override, 3-84
PLCC_read_PLC_ID, 3-63
PLCC_read_PLC_state, 3-63
PLCC_read_window_values, 3-49
PLCC_reset_watchdog_timer, 3-61
PLCC_scan_set_io, 3-83
PLCC_set_run_enable, 3-67
PLCC_shut_down_plc, 3-64
PLCC_SNP_ID, 3-84
PLCC_sus_io, 3-82

 Index

GFK-2259E Index Index-3

PLCC_sus_res_HSC_interrupts, 3-69
PLCC_sus_res_interrupts_ext, 3-70, A-26
PLCC_time_since_start_of_sweep, 3-61
PLCC_tod_clock, 3-54
PlcMemCopy, 3-96
PlcVarArrayBound, 3-122
PlcVarArrayElementSiz, 3-122
PlcVarHasDiags, 3-121
PlcVarHasTransitions, 3-121
PlcVarMemCopy, 3-117
PlcVarNumDimensions, 3-120
PlcVarSizeof, 3-118
PlcVarSizeofDiag, 3-119
PlcVarSizeofOvr, 3-119
PlcVarSizeofTrans, 3-120
PlcVarType, 3-118
Pointers to discrete memory tables

input parameters, 5-5

Proc ReadPlcVar, 3-107

R
rackX, 3-98
ReadPlcArrayVarElement, 3-108
ReadPlcArrayVarElementDiag, 3-110
ReadPlcArrayVarElementOvr, 3-112
ReadPlcArrayVarElementTrans, 3-114
ReadPlcByte, 3-88
ReadPlcDint, 3-93
ReadPlcDouble, 3-95
ReadPlcInt, 3-91
ReadPlcVarDiag, 3-109
ReadPlcVarOvr, 3-111
ReadPlcVarTrans, 3-113
ReadPlcWord, 3-90
Reference access macros, 3-18

formatting, 3-19

Reference memory functions, 3-86
Reference memory functions and macros,

A-1
Reference Memory Size macros, 3-24
Reference Table Monitoring, 4-4
Reference types, 3-19
refMemSize, 3-97
Related information, 1-1
Reserved names, 3-2
Retentive data for C blocks, 3-125
Retentive variables

compatibility, 5-4

rsmb, 3-101
Running C Toolkit, 2-3
Runtime errors

PLC support, 3-134

Run-time functions, B-1

Runtime library
errors, 3-134

S
Sample blocks, 6-1
SampleProj1, 6-1
SampleProj2, 6-2
Scheduling C blocks, 3-11
Service Request functions, 3-48
Set application redundancy mode, 3-72
setBit, 3-97
Single C source file

sample, 6-1

Size
C block, 1-1

slotX, 3-99
Specifying parameters, 3-10
Stack overflow checking, 3-14
Standard library routines, 3-27
Static variables, 3-125
System requirements, 2-1

T
Target library

error functions, structures and constants, A-
28
fault table functions, structures and
constants, A-11
general functions structures and constants,
A-17
reference memory functions and macros, A-
1
utility functions, structures, and constants,
A-28
VME functions, structures, and constants,
A-27

Target library functions, A-1
Technical Support. See page iii
Testing C Applications in the PC

Environment, 4-1
Transition, Alarm, and Fault macros, 3-25
Troubleshooting, C-1

U
Uninitialized pointers, 3-130
Uninstalling, 2-4
Using the C Block in an LD program, 3-11
Utility functions, 3-103
Utility functions, structures and constants,

A-28

Index

Index-4 C Programmer’s Toolkit for PACSystems* User’s Manual–January 2012 GFK-2259E

V
Variable declarations, 3-14
Variable initialization, 3-124
Variable types, 3-5
VME functions, structures and constants,

A-27

W
WritePlcArrayVarElement, 3-116
WritePlcByte, 3-87
WritePlcDint, 3-92
WritePlcDouble, 3-94
WritePlcInt, 3-90
WritePlcVar, 3-115
WritePlcWord, 3-89
Writes to %S memory using SB(x), 3-132
Writing directly to discrete memory, 5-2

	C Programmer's Toolkit for PACSystems User's Manual, GFK-2259E
	Warnings, Cautions, and Notes
	Contact Information
	Contents

	1. Introduction
	Related Information

	2. Installation
	System Requirements
	Installing the C Toolkit for PACSystems
	To install the Toolkit:

	Running C Toolkit
	C Toolkit File Structure
	Directories
	Files:

	Uninstalling C Toolkit

	3. Writing a C Application
	Name Requirements
	File Names
	Reserved Names

	C Applications in the PACSystems Environment
	Developing a C Block
	C Toolkit Variable Types
	Compiling
	Compiling a Single C File
	Compiling Multiple C Files
	Specifying Compiler Options
	Compiling User C Blocks Under an Older Toolkit Version

	Associating a Compiled C Block with the Application Program
	Adding Blocks through the Machine Edition Programmer
	Specifying Parameters
	Scheduling C Blocks
	Using a C Block in an LD or FBD Program
	Using a C Block in an ST Program

	PACSystems C Block Structure
	Variable Declarations
	Stack Overflow Checking
	Parameter Pointer Validation

	PLC Reference Memory Access
	Potential consequences:
	Alternatives:
	How to Format a PLC Reference Access Macro
	Bit Macros
	Byte Macros
	Integer/Word Macros
	Double Word/Floating Point Macros
	Double Precision Floating Point Macros
	Reference Memory Size Macros
	Transition, Alarm, and Fault Macros
	Transition and Alarm Macros
	Macros for accessing the %I, %Q, %M, %T, %G, %S, and %SA - %SC transition bits
	Macros for accessing the %I, %Q, %M, %T, %G, %S, and %SA - %SC transition bits as bytes
	Macros for accessing the %I, %Q, %AI, %AQ Diagnostic memory
	Definitions used with macros that access Analog Input DIAGNOSTIC memory(s)
	Definitions used with macros that access Analog Output DIAGNOSTIC memory(s)
	Diagnostic memory macros
	Macros for accessing RACK/SLOT/BLOCK fault information

	Standard Library Routines
	PACSystems Functions
	General PLC Functions
	PLCC_read_elapsed_clock
	Description
	InParam pElapsedClockRec
	ReturnVal

	PLCC_read_nano_elapsed_clock
	Description
	InParam pNanoElapsedClockRec
	ReturnVal

	PLCC_chars_in_printf_q
	PLCC_MessageWrite
	Description
	InParam port
	InParam buffer
	InParam numBytes
	ReturnVal
	Errno

	Proc PLCC_MessageRead
	Description
	InParam port
	InParam buffer
	InParam numBytes
	ReturnVal
	Errno

	Proc PLCC_CharsInMessageWriteQ
	Description
	InParam port
	ReturnVal
	Errno

	Proc PLCC_CharsInMessageReadQ
	Description
	InParam port
	ReturnVal
	Errno

	PLCC_gen_alarm
	Description
	InParam error_code
	InParam fault_string
	ReturnVal

	PLCC_get_plc_version
	Description
	InParam PLC_ver_info
	ReturnVal

	Bus Read/Write Functions
	Proc PLCC_BUS_read_byte
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pBuffer
	InParam address
	ReturnVal

	Proc PLCC_BUS_read_word
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pBuffer
	InParam address
	ReturnVal

	Proc PLCC_BUS_read_dword
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pBuffer
	InParam address
	ReturnVal

	Proc PLCC_BUS_read_block
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pBuffer
	InParam length
	InParam address
	ReturnVal

	Proc PLCC_BUS_write_byte
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	InParam value
	InParam address
	ReturnVal

	Proc PLCC_BUS_write_word
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	InParam value
	InParam address
	ReturnVal

	Proc PLCC_BUS_write_dword
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	InParam value
	InParam address
	ReturnVal

	Proc PLCC_BUS_write_block
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	InParam pBuffer
	InParam length
	InParam address
	ReturnVal

	BUS Semaphore Functions
	PLCC_BUS_RMW_byte
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pOriginalValue
	InParam op_type
	InParam mask
	InParam address
	ReturnVal

	Proc PLCC_BUS_RMW_word
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pOriginalValue
	InParam op_type
	InParam mask
	InParam address
	ReturnVal

	Proc PLCC_BUS_RMW_dword
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam pOriginalValue
	InParam op_type
	InParam mask
	InParam address
	ReturnVal

	Proc PLCC_BUS_TST_byte
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam semaphore_output
	InParam address
	ReturnVal

	Proc PLCC_BUS_TST_word
	Description
	InParam rack
	InParam slot
	InParam subSlot
	InParam region
	OutParam pStatus
	OutParam semaphore_output
	InParam address
	ReturnVal

	Service Request Functions
	PLCC_const_sweep_timer
	Description
	In/OutParam pConstSweepTimerRec
	ReturnVal

	PLCC_read_window_values
	Description
	OutParam pStatus
	ReturnVal

	PLCC_change_controller_comm_window
	Description
	InParam pChangeControllerCommWindowRec
	ReturnVal

	PLCC_change_backplane_comm_window
	Description
	InParam pChangeBackplaneCommWindowRec
	ReturnVal

	PLCC_change_background_window
	Description
	InParam pChangeBackgroundWindowRec
	ReturnVal

	PLCC_number_of_words_in_chksm
	Description
	InParam pNumberOfWordsInChksmRec
	ReturnVal

	PLCC_tod_clock
	Data Formats
	Day of the Week Definitions:
	NUMERIC_DATA_FORMAT
	BCD_FORMAT
	UNPACKED_BCD_FORMAT
	PACKED_ASCII_FORMAT
	Description
	In/OutParam pTodClockRec
	ReturnVal

	PLCC_reset_watchdog_timer
	Description
	ReturnVal

	PLCC_time_since_start_of_sweep
	Description
	InParam pTimeSinceStartOfSweepRec
	ReturnVal

	PLCC_nano_time_since_start_of_sweep
	Description
	InParam pNanoTimeSinceStartOfSweepRec
	ReturnVal

	PLCC_read_folder_name
	Description
	OutParam pReadFolderNameRec
	ReturnVal

	PLCC_read_PLC_ID
	Description
	OutParam pReadPlcIdRec
	ReturnVal

	PLCC_read_PLC_state
	Description
	OutParam pReadPlcStateRec
	ReturnVal

	PLCC_shut_down_plc
	Description
	InParam numberOfSweeps
	ReturnVal

	PLCC_mask_IO_interrupts
	Description
	InParam pMaskIoInterruptsRec
	ReturnVal

	PLCC_mask_IO_interrupts_ext
	Description
	InParam pMaskIoInterruptsExtRec
	ReturnVal
	Errno

	PLCC_read_IO_override_status
	Description
	OutParam pReadIoOverrideStatusRec
	ReturnVal

	PLCC_set_run_enable
	Description
	InParam pSetRunEnableRec
	ReturnVal

	PLCC_mask_timed_interrupts
	Description
	In/OutParam pMaskTimedInterruptsRec
	ReturnVal

	PLCC_sus_res_HSC_interrupts
	Description
	InParam pSusResHscInterruptsRec
	ReturnVal

	PLCC_sus_res_interrupts_ext
	Description
	InParam pSusResInterruptsExtRec
	ReturnVal
	Errno

	PLCC_get_escm_status
	Description
	Port_Status for the PLCC_get_escm_status Function
	OutParam pEscmStatusRec
	ReturnVal

	PLCC_set_application_redundancy_mode
	Description
	InParam mode
	ReturnVal

	Fault Table Service Request Functions
	PLCC_clear_fault_tables
	Description
	InParam x
	ReturnVal

	PLCC_read_last_fault
	Description
	InParam x
	Return Data

	PLCC_read_fault_tables
	Description
	InParam x
	Return Data

	PLCC_read_last_ext_fault
	Description
	InParam x
	ReturnVal

	PLCC_read_ext_fault_tables
	Description
	InParam x
	ReturnVal

	Module Communications
	PLCC_comm_req
	Description
	InParam pCommReqRec
	ReturnVal

	Ladder Function Blocks
	PLCC_do_io
	Description
	InParam pDoIoRec
	ReturnVal

	PLCC_do_io_ext
	Description
	InParam pDoIoRec
	ReturnVal
	Errno

	PLCC_sus_io
	Description
	ReturnVal

	PLCC_scan_set_io
	Description
	InParam pScanSetIo
	ReturnVal

	Miscellaneous General Functions
	PLCC_SNP_ID
	Description
	InParam request_type
	InParam id_str_ptr
	ReturnVal

	PLCC_read_override
	Description
	InParam seg_sel
	InParam ref_num
	InParam len
	OutParam data
	ReturnVal

	Reference Memory Functions
	PLC_VAR_MEM
	WritePlcByte
	Description
	InParam RefTable
	InParam offset
	InParam writeValue
	InParam msbByte
	ReturnVal
	Errno

	ReadPlcByte
	Description
	InParam RefTable
	InParam offset
	InParam msbByte
	ReturnVal
	Errno

	WritePlcWord
	Description
	InParam RefTable
	InParam offset
	InParam writeValue
	ReturnVal
	Errno

	ReadPlcWord
	Description
	InParam RefTable
	InParam offset
	ReturnVal
	Errno

	WritePlcInt
	Description
	InParam RefTable
	InParam offset
	InParam writeValue
	ReturnVal
	Errno

	ReadPlcInt
	Description
	InParam RefTable
	InParam offset
	ReturnVal
	Errno

	WritePlcDint
	Description
	InParam RefTable
	InParam offset
	InParam writeValue
	ReturnVal
	Errno

	ReadPlcDint
	Description
	InParam RefTable
	InParam offset
	ReturnVal
	Errno

	WritePlcDouble
	Description
	InParam RefTable
	InParam offset
	InParam writeValue
	ReturnVal
	Errno

	ReadPlcDouble
	Description
	InParam RefTable
	InParam offset
	ReturnVal
	Errno

	PlcMemCopy
	Description
	InParam pDestination
	InParam pSource
	InParam size
	ReturnVal
	Errno

	refMemSize
	Description
	InParam RefTable
	ReturnVal
	Errno

	setBit
	Description
	InParam RefTable
	InParam offset
	InParam bitNumber
	ReturnVal
	Errno

	clearBit
	Description
	InParam RefTable
	InParam offset
	InParam bitNumber
	ReturnVal
	Errno

	rackX
	Description
	InParam rackNumber
	ReturnVal
	Errno

	slotX
	Description
	InParam rackNumber
	InParam slotNumber
	ReturnVal
	Errno

	blockX
	Description
	InParam rackNumber
	InParam slotNumber
	InParam busNumber
	InParam sbaNumber
	ReturnVal
	Errno

	rsmb
	Description
	InParam rackNumber
	ReturnVal
	Errno

	Utility Function
	PLCC_Crc16Checksum
	Description
	InParam pFirstByte
	InParam length
	InParam currentCrcValue
	ReturnVal
	Errno

	Errno Functions
	PLCC_GetErrno
	Description
	ReturnVal

	PLCC_ClearErrno
	Description

	PLC Variable Access
	Type and Structure Definitions
	PLC_VAR
	Description
	InParam VariableRecord
	InParam PlcVariableName
	Example 1
	Example 2:
	Example 3:
	Example 4:

	PLC Var 'C' Types

	Routines
	Proc ReadPlcVar
	Description
	InParam pVarInfo
	InParam pReadTo
	ReturnVal
	Errno

	Proc ReadPlcArrayVarElement
	Description
	InParam pVarInfo
	InParam pReadTo
	InParam numIndices
	InParam <indices>
	ReturnVal
	Errno

	Proc ReadPlcVarDiag
	Description
	InParam pVarInfo
	InParam pReadDiagsTo
	Errno
	Bit Masks to be Used with Diagnostics

	Proc ReadPlcArrayVarElementDiag
	Description
	InParam pVarInfo
	InParam pReadDiagsTo
	InParam numIndices
	InParam <indices>
	Errno
	Bit Masks to be Used with Diagnostics

	Proc ReadPlcVarOvr
	Description
	InParam pVarInfo
	InParam pReadOvrTo
	Errno

	Proc ReadPlcArrayVarElementOvr
	Description
	InParam pVarInfo
	InParam pReadOvrTo
	InParam numIndices
	InParam <indices>
	Errno

	Proc ReadPlcVarTrans
	Description
	InParam pVarInfo
	InParam pReadTransTo
	Errno

	Proc ReadPlcArrayVarElementTrans
	Description
	InParam pVarInfo
	InParam pReadTransTo
	InParam numIndices
	InParam <indices>
	Errno

	Proc WritePlcVar
	Description
	InParam pVarInfo
	InParam pWriteFrom
	ReturnVal
	Errno

	Proc WritePlcArrayVarElement
	Description
	InParam pVarInfo
	InParam pWriteFrom
	InParam numIndices
	InParam <indices>
	ReturnVal
	Errno

	Proc PlcVarMemCopy
	Description
	InParam pDestVarInfo
	InParam pSrcVarInfo
	ReturnVal
	Errno

	Proc PlcVarType
	Description
	InParam pVarInfo
	ReturnVal varType

	Proc PlcVarSizeof
	Description
	InParam pVarInfo
	ReturnVal size

	Proc PlcVarSizeofDiag
	Description
	InParam pVarInfo
	ReturnVal size

	Proc PlcVarSizeofOvr
	Description
	InParam pVarInfo
	ReturnVal size

	Proc PlcVarSizeofTrans
	Description
	InParam pVarInfo
	ReturnVal size

	Proc PlcVarNumDimensions
	Description
	InParam pVarInfo
	ReturnVal numDimensions

	Proc PlcVarHasDiags
	Description
	InParam pVarInfo
	ReturnVal

	Proc PlcVarHasOverrides
	Description
	InParam pVarInfo
	ReturnVal

	Proc PlcVarHasTransitions
	Description
	InParam pVarInfo
	ReturnVal

	Proc PlcVarArrayElementSize
	Description
	InParam pVarInfo
	ReturnVal

	Proc PlcVarArrayBound
	Description
	InParam pVarInfo
	InParam dimension
	ReturnVal

	Application Considerations
	Application File Names
	Floating Point Arithmetic
	Available Reference Data Ranges
	Range Checking Indirect References Using the SIZE Macros

	Global Variable Initialization
	Static Variables
	Data Retentiveness
	Examples:

	GefMain() Parameter Declaration Errors for Blocks
	Type Mismatch Errors
	Parameter Ordering Errors
	Parameter Number Errors

	Uninitialized Pointers
	PLC Local Registers (%P and %L)
	%P and %L in Ladder Logic
	Descriptions of %P and %L
	Data Scope of %P and %L

	Block Enable Output (ENO)
	Writes to %S Memory Using SB(x)
	FST_EXE and FST_SCN Macros
	LST_SCN Macro
	Runtime Error Handling
	C Application Impact on PLC Memory
	Blocks as Timed or I/O Interrupt Blocks
	Restricting Compilation to a Specific Target

	4. Debugging and Testing C Applications
	Testing C Applications in the PC Environment
	Debugging C Applications in the PLC
	Message Mode Debugging
	Reference Table Monitoring

	5. Conversion Notes and Series 90 Compatibility
	Series 90 Compatibility Header Files (PLCC9070.h and PLCC9030.h)
	PLCC9070.h
	PLCC9030.h

	Writing Directly to Discrete Memory
	PLC Target Library Function Compatibility Issues
	Compatibility Issues with Retentive Global Variables
	“int” Type Issues
	“enum” Type Issues
	Non-Standard C Library Functions
	Entry Point
	C Standalone Programs
	Use of Input Parameters as Pointers to Discrete Memory Tables

	6. Installed Sample Blocks
	SampleProj1
	SampleProj2

	A. Target Library Functions
	Target Library Reference Memory Functions and Macros
	Implemented in ctkRefMem.h

	Target Library Fault Table Functions, Structures and Constants
	Implemented in ctkPlcFault.h

	Target Library General Functions, Structures and Constants
	Implemented in ctkPlcFunc.h

	Target Library VME Functions, Structures and Constants
	Implemented in ctkPlcBus.h – Compatible with Rx7 only

	Target Library Error Functions, Structures and Constants
	Implemented in ctkPlcErrno.h

	Target Library Utility Functions, Structures and Constants
	Implemented in ctkPlcUtil.h

	B. C Run-Time Library Functions
	C. Diagnostics
	Issue: Compiler issues the following warning when the EnableAnsi flag is used:
	Issue: Compiler issues the following statement: warning: `HUGE_VAL’ redefined.
	Issue: Compiler issues the following error statement: undefined reference to `isascii’ when the EnableAnsi flag is used. In addition, the C Block will not store to the PLC.
	Issue: On some Windows 2000 PCs, the local DOS Box Environment "path" variable is not used, resulting in the compile process failing because the path to the compiler batch file is not found.

	Index

